OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5402–5408

A microfiber coupler tip thermometer

Ming Ding, Pengfei Wang, and Gilberto Brambilla  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5402-5408 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1569 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact thermometer based on a broadband microfiber coupler tip is demonstrated. This sensor can measure a broad temperature interval ranging from room temperature to 1283 °C with sub-200 µm spatial resolution. An average sensitivity of 11.96 pm/°C was achieved for a coupler tip with ~2.5 µm diameter. This is the highest temperature measured with a silica optical fiber device.

© 2012 OSA

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.1150) Optical devices : All-optical devices

ToC Category:

Original Manuscript: December 21, 2011
Revised Manuscript: February 6, 2012
Manuscript Accepted: February 14, 2012
Published: February 21, 2012

Ming Ding, Pengfei Wang, and Gilberto Brambilla, "A microfiber coupler tip thermometer," Opt. Express 20, 5402-5408 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997). [CrossRef]
  2. K. T. V. Grattan, Z. Y. Zhang, T. Sun, Y. Shen, L. Tong, and Z. Ding, “Sapphire-ruby single-crystal fibre for application in high temperature optical fibre thermometers: studies at temperatures up to 1500 °C,” Meas. Sci. Technol. 12, 981–986 (2001).
  3. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 ° C,” Opt. Express 17(24), 21551–21559 (2009). [CrossRef] [PubMed]
  4. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010). [CrossRef] [PubMed]
  5. D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004). [CrossRef]
  6. J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y. Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011). [CrossRef]
  7. J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express 19(19), 18452–18457 (2011). [CrossRef] [PubMed]
  8. V. de Oliveira, M. Muller, and H. J. Kalinowski, “Bragg gratings in standard nonhydrogenated fibers for high-temperature sensing,” Appl. Opt. 50(25), E55–E58 (2011). [CrossRef]
  9. G. Brambilla and H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80(18), 3259–3261 (2002). [CrossRef]
  10. D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature application,” IEEE Sens. J. 12(1), 107–112 (2012). [CrossRef]
  11. J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008). [CrossRef]
  12. Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. Grattan, “Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation,” Opt. Express 17(22), 19785–19790 (2009). [CrossRef] [PubMed]
  13. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]
  14. C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006). [CrossRef]
  15. G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010). [CrossRef]
  16. G. Brambilla, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32(20), 3041–3043 (2007). [CrossRef] [PubMed]
  17. Y. Jung, G. Brambilla, and D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16(19), 14661–14667 (2008). [CrossRef] [PubMed]
  18. Y. Jung, G. Brambilla, and D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009). [CrossRef] [PubMed]
  19. H. Guo, F. Pang, X. Zeng, N. Chen, Z. Chen, and T. Wang, “Temperature sensor using an optical fiber coupler with a thin film,” Appl. Opt. 47(19), 3530–3534 (2008). [CrossRef] [PubMed]
  20. G. Brambilla, E. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41(7), 400–402 (2005). [CrossRef]
  21. F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985). [CrossRef]
  22. J. H. Wray and J. T. Neu, “Refractive index of several glasses as a function of wavelength and temperature,” J. Opt. Soc. Am. 59(6), 774–776 (1969). [CrossRef]
  23. C. Rodenburg, X. Lui, M. A. E. Jepson, S. A. Boden, and G. Brambilla, ““Surface morphology of silica nanowires at the nanometer scale,”J. Non-Cryst. Sol. 357, 3042–3045 (2011).
  24. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997). [CrossRef]
  25. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited