OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5460–5469

All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates

Svetlana V. Serak, Rafael S. Hakobyan, Sarik R. Nersisyan, Nelson V. Tabiryan, Timothy J. White, Timothy J. Bunning, Diane M. Steeves, and Brian R. Kimball  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5460-5469 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1247 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Pairs of cycloidal diffractive waveplates can be used to doubly diffract or collinearly propagate laser radiation of the appropriate wavelength. The use of a dynamic phase retarder placed in between the pair can be utilized to switch between the two optical states. We present results from the implementation of an azo-based retarder whose optical properties can be modulated using light itself. We show fast and efficient switching between the two states for both CW and single nanosecond laser pulses of green radiation. Contrasts greater than 100:1 were achieved. The temporal response as a function of light intensity is presented and the optical switching is shown to be polarization independent.

© 2012 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(190.4400) Nonlinear optics : Nonlinear optics, materials
(230.3990) Optical devices : Micro-optical devices
(260.5130) Physical optics : Photochemistry

ToC Category:
Optical Devices

Original Manuscript: January 5, 2012
Revised Manuscript: February 13, 2012
Manuscript Accepted: February 13, 2012
Published: February 21, 2012

Svetlana V. Serak, Rafael S. Hakobyan, Sarik R. Nersisyan, Nelson V. Tabiryan, Timothy J. White, Timothy J. Bunning, Diane M. Steeves, and Brian R. Kimball, "All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates," Opt. Express 20, 5460-5469 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Kitsinelis, Light sources: technologies and applications (Taylor & Francis, Boca Raton, FL, 2011).
  2. M. Csele, Fundamentals of light sources and lasers (John Wiley & Sons, Hoboken, NJ, 2004).
  3. M. O’Neill and S. M. Kelly, “Ordered materials for organic electronics and photonics,” Adv. Mater. (Deerfield Beach Fla.)23(5), 566–584 (2011). [CrossRef] [PubMed]
  4. T. Smeeton and C. Humphreys, “Perspectives on electronic and optoelectronic materials,” in Springer handbook of electronic and photonic materials, S. O. Kasap and P. Capper, eds. (Springer, New York, NY, 2006).
  5. S. Ossicini, L. Pavesi, and F. Priolo, Light emitting silicon for microphotonics (Springer, Berlin, 2003).
  6. A. Al-Azzawi, Photonics: principles and practices (CRC Press, Boca Raton, FL, 2007).
  7. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics (John Wiley & Sons, Inc., Hoboken, NJ, 2007).
  8. A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater. (Deerfield Beach Fla.)16(16), 1453–1456 (2004). [CrossRef]
  9. R. T. Pogue, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, R. L. Sutherland, and T. J. Bunning, “Monomer functionality effects in the anisotropic phase separation of liquid crystals,” Polymer (Guildf.)41(2), 733–741 (2000). [CrossRef]
  10. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, S. A. Siwecki, and T. J. Bunning, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B19(12), 3004–3012 (2002). [CrossRef]
  11. J. Klosterman, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, T. J. White, C. A. Guymon, and T. J. Bunning, “The influence of surfactant in reflective HPDLC gratings,” Polymer (Guildf.)45(21), 7213–7218 (2004). [CrossRef]
  12. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci.30(1), 83–115 (2000). [CrossRef]
  13. A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J. H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc.126(42), 13580–13581 (2004). [CrossRef] [PubMed]
  14. M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci.365(1861), 2829–2843 (2007). [CrossRef] [PubMed]
  15. J. Squier and M. Muller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum.72(7), 2855–2867 (2001). [CrossRef]
  16. M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol.24(12), 4433–4454 (2006). [CrossRef]
  17. D. K. Yang and S. T. Wu, Fundamentals of liquid crystal devices (John Wiley, West Sussex, England, 2006).
  18. R. R. Hainich and O. Bimber, Displays: fundamentals & applications (Taylor & Francis Group, Boca Raton, FL, 2011).
  19. S. T. Wu and D. K. Yang, Reflective liquid crystal displays (Wiley, West Sussex, England, 2001).
  20. T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem.20(44), 9832–9847 (2010). [CrossRef]
  21. D. Brennan, J. Justice, B. Corbett, T. McCarthy, and P. Galvin, “Emerging optofluidic technologies for point-of-care genetic analysis systems: a review,” Anal. Bioanal. Chem.395(3), 621–636 (2009). [CrossRef] [PubMed]
  22. G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt.51(3), 409–414 (2004). [CrossRef]
  23. W. R. Jamroz, R. V. Kruzelecky, and E. I. Haddad, Applied microphotonics (CRC Taylor & Francis, Boca Raton, FL, 2006).
  24. W. T. Welford, Aberrations of optical systems (Taylor and Francis, New York, NY, 1986).
  25. W. Cai and V. Shalaev, Optical metamaterials (Springer, New York, NY, 2010).
  26. O. D. Lavrentovich, “Liquid crystals, photonic crystals, metamaterials, and transformation optics,” Proc. Natl. Acad. Sci. U.S.A.108(13), 5143–5144 (2011). [CrossRef] [PubMed]
  27. Y. Yu and T. Ikeda, “Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions,” J. Photochem. Photobiol. Chem.5(3), 247–265 (2004). [CrossRef]
  28. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photon. News21(3), 40–45 (2010). [CrossRef]
  29. N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Advances1(2), 022153 (2011). [CrossRef]
  30. S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express17(3), 1817–1830 (2009). [CrossRef] [PubMed]
  31. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)489(1), 257–272 (2008). [CrossRef]
  32. U. Hrozhyk, S. Serak, N. Tabiryan, D. M. Steeves, L. Hoke, and B. R. Kimball, “Azobenzene liquid crystals for fast reversible optical switching and enhanced sensitivity for visible wavelengths,” Proc. SPIE7414, 74140L (2009). [CrossRef]
  33. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express18(8), 8697–8704 (2010). [CrossRef] [PubMed]
  34. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express18(9), 9651–9657 (2010). [CrossRef] [PubMed]
  35. O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. Chem. Phys.1(18), 4219–4224 (1999). [CrossRef]
  36. I. C. Khoo, M. Wood, M. Y. Shih, and P. Chen, “Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection,” Opt. Express4(11), 432–442 (1999). [CrossRef] [PubMed]
  37. I. C. Khoo, M. Y. Shih, and A. Shishido, “Supra optical nonlinearities of potosensitive nematic liquid crystals,” Mol. Cryst. Liq. Crys. A364(1), 141–149 (2001). [CrossRef]
  38. L. Deng and H.-K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng.42(10), 2936–2941 (2003). [CrossRef]
  39. T.-H. Lin and A. Y.-G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett.87(1), 011106 (2005). [CrossRef]
  40. L. Nikolova and S. Ramanujam, Polarization holography (Cambridge University Press, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited