OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5508–5517

Entangled photon generation in two-period quasi-phase-matched parametric down-conversion

Wakana Ueno, Fumihiro Kaneda, Hirofumi Suzuki, Shigehiro Nagano, Atsushi Syouji, Ryosuke Shimizu, Koji Suizu, and Keiichi Edamatsu  »View Author Affiliations


Optics Express, Vol. 20, Issue 5, pp. 5508-5517 (2012)
http://dx.doi.org/10.1364/OE.20.005508


View Full Text Article

Enhanced HTML    Acrobat PDF (1893 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We proposed and demonstrated a simple but deterministic scheme for generating polarization-entangled photon pairs at telecommunication wavelengths with type-II quasi-phase-matched spontaneous parametric down-conversion (QPM-SPDC) having two poling periods. We fabricated a LiNbO3 crystal having two poling periods so as to generate entangled photons at two wavelengths, i.e., 1506 nm and 1594 nm. We characterized the two-photon polarization state with state tomography and confirmed that the state was highly entangled.

© 2012 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

History
Original Manuscript: November 28, 2011
Revised Manuscript: January 6, 2012
Manuscript Accepted: January 6, 2012
Published: February 22, 2012

Citation
Wakana Ueno, Fumihiro Kaneda, Hirofumi Suzuki, Shigehiro Nagano, Atsushi Syouji, Ryosuke Shimizu, Koji Suizu, and Keiichi Edamatsu, "Entangled photon generation in two-period quasi-phase-matched parametric down-conversion," Opt. Express 20, 5508-5517 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-5-5508


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bellfs inequalities using time- varying analyzers,” Phys. Rev. Lett.49, 1804–1807 (1982). [CrossRef]
  2. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett.70, 1895–1899 (1993). [CrossRef] [PubMed]
  3. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001). [CrossRef] [PubMed]
  4. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995). [CrossRef] [PubMed]
  5. S. Tanzilli, W. Tittel, H. D. Riedmatten, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D18, 155–160 (2002). [CrossRef]
  6. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “Highflux source of polarization-entangled photons from a periodically poled ktiopo4 parametric down-converter,” Phys. Rev. A69, 013807 (2004). [CrossRef]
  7. T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A73, 012316 (2006). [CrossRef]
  8. Y.-X. Gong, Z.-D. Xie, P. Xu, X.-Q. Yu, P. Xue, and S.-N. Zhu, “Compact sources of narrow-band counter-propagation polarization-entangled photon pairs using a single dual-periodically-poled crystal,” Phys. Rev. A84, 053825 (2011). [CrossRef]
  9. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett.22, 1553–1555 (1997). [CrossRef]
  10. M. V. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett.22, 243–244 (1966). [CrossRef]
  11. M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in Type-II optical parametric down-conversion,” Phys. Rev.A50, 5122–5133 (1994). [CrossRef] [PubMed]
  12. Y.-H. Kim and W. P. Grice, “Generation of pulsed polarization-entangled two-photon state via temporal and spectral engineering,” J. Mod. Opt.49, 2309–2323 (2002). [CrossRef]
  13. Y.-H. Kim, S. P. Kulik, and Y. Shih, “Bell-state preparation using pulsed nondegenerate two-photon entanglement,” Phys. Rev. A, 63, 060301(R) (2001). [CrossRef]
  14. S. Nagano, M. Konishi, T. Shiomi, and M. Minakata, “Study on formation of small polarization domain inversion for high-efficiency quasi-phase-matched second-harmonic generation device,” Jpn. J. Appl. Phys.42, 4334–4339 (2003). [CrossRef]
  15. S. Nagano, R. Shimizu, Y. Sugiura, K. Suizu, K. Edamatsu, and H. Ito, “800-nm band cross-polarized photon pair source using type-II parametric down-conversion in periodically poled lithium niobate,” Jpn. J. Appl. Phys.46, L1064–L1067 (2007). [CrossRef]
  16. S. Nagano, A. Syouji, R. Shimizu, K. Suizu, H. Ito, and K. Edamatsu, “Generation of cross-polarized photon pairs via type-II third-order quasi-phase matched parametric down-conversion,” Jpn. J. Appl. Phys.48, 050205 (2009). [CrossRef]
  17. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A64, 052312 (2001). [CrossRef]
  18. S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett.78, 5022–5025 (1997). [CrossRef]
  19. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett.80, 2245–2248 (1998). [CrossRef]
  20. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A, 54, 3824–3851 (1996). [CrossRef] [PubMed]
  21. R. Shimizu and K. Edamatsu, “High-flux and broadband biphoton sources with controlled frequency entanglement,” Opt. Express17, 16385–16393 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited