OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5518–5523

Silicon photodiodes with high photoconductive gain at room temperature

X. Li, J. E. Carey, J. W. Sickler, M. U. Pralle, C. Palsule, and C. J. Vineis  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5518-5523 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (778 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Silicon photodiodes with high photoconductive gain are demonstrated. The photodiodes are fabricated in a complementary metal-oxide-semiconductor (CMOS)-compatible process. The typical room temperature responsivity at 940 nm is >20 A/W and the dark current density is ∼100 nA/cm2 at 5 V reverse bias, yielding a detectivity of ∼1014 Jones. These photodiodes are good candidates for applications that require high detection sensitivity and low bias operation.

© 2012 OSA

OCIS Codes
(040.5150) Detectors : Photoconductivity
(040.5160) Detectors : Photodetectors
(040.6040) Detectors : Silicon
(160.5140) Materials : Photoconductive materials
(230.5160) Optical devices : Photodetectors
(230.5170) Optical devices : Photodiodes

ToC Category:

Original Manuscript: December 2, 2011
Revised Manuscript: January 12, 2012
Manuscript Accepted: February 15, 2012
Published: February 22, 2012

X. Li, J. E. Carey, J. W. Sickler, M. U. Pralle, C. Palsule, and C. J. Vineis, "Silicon photodiodes with high photoconductive gain at room temperature," Opt. Express 20, 5518-5523 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Bube, Photoconductivity of Solids (Krieger Publishing, 1960), pp 365–367.
  2. S. Espevik, C. Wu, and R. H. Bube, “Mechanism of photoconductivity in chemically deposited lead sulfide layers,” J. Appl. Phys.42, 3513–3529 (1971). [CrossRef]
  3. P. H. Wendland, “New large area CdS photoconductor,” Rev. Sci. Instrum.33, 337–339 (1962). [CrossRef]
  4. H. Chen, M. K. F. Lo, G. Yang, H. G. Monbouquette, and Y. Yang, “Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene,” Nat. Nanotechnol.3, 543–547 (2008). [CrossRef] [PubMed]
  5. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clofford, E. Klem, L. Levina, and E. H. Sargent, “Ultra-sensitive solution-cast quantum dot photodetectors,” Nature442, 180–183 (2006). [CrossRef] [PubMed]
  6. G. Konstantatos and E. H. Sargent, “PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain,” Appl. Phys. Lett.91, 173505 (2007). [CrossRef]
  7. G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photon.1, 531–534 (2007). [CrossRef]
  8. G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett.8, 1446–1450 (2008). [CrossRef] [PubMed]
  9. A. F. Sklensky and R. H. Bube, “Photoelectronic properties of zinc impurity in silicon,” Phys. Rev.6, 1328–1336 (1972). [CrossRef]
  10. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, New Jersey2007).
  11. J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett.30, 1773–1775 (2005). [CrossRef] [PubMed]
  12. M. U. Pralle, J. E. Carey, H. Homayoon, S. Alie, J. Sickler, X. Li, J. Jiang, D. Miller, C. Palsule, and J. McKee, “Black silicon enhanced photodetectors: a path to IR CMOS,” Proc. SPIE7660, 76600N (2010). [CrossRef]
  13. http://sales.hamamatsu.com/assets/pdf/parts_S/s8745-01_etc_kspd1065e01.pdf .
  14. R. Steadman, F. M. Serrano, G. Vogtmeier, A. Kemna, E. Oezkan, W. Brockherde, and B. J. Hosticka, “A CMOS photodiode array with in-pixel data acquisition system for computed tomography,” IEEE J. Solid-State Circuits39, 1034–1043 (2004) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited