OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5530–5537

Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity

Tien-Chang Lu, Ying-Yu Lai, Yu-Pin Lan, Si-Wei Huang, Jun-Rong Chen, Yung-Chi Wu, Wen-Feng Hsieh, and Hui Deng  »View Author Affiliations


Optics Express, Vol. 20, Issue 5, pp. 5530-5537 (2012)
http://dx.doi.org/10.1364/OE.20.005530


View Full Text Article

Enhanced HTML    Acrobat PDF (2869 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the room temperature polariton lasing and photon lasing in a ZnO-based hybrid microcavity under optical pumping. A series of experimental studies of the polariton lasing (exciton-photon detunings of δ = −119meV) in the strong-coupling regime are discussed and compared to a photon lasing (δ = −45meV) in the weak-coupling regime obtained in the same structure. The measured threshold power density (31.8kW/cm2) of polariton lasing is one order of magnitude lower than that of the photon lasing (318.2kW/cm2). In addition, the comparison between polariton lasing and photon lasing is done in terms of the linewidth broadening, blue-shift of the emission peak, and polarization.

© 2012 OSA

OCIS Codes
(140.3945) Lasers and laser optics : Microcavities
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 23, 2011
Revised Manuscript: December 19, 2011
Manuscript Accepted: January 10, 2012
Published: February 22, 2012

Citation
Tien-Chang Lu, Ying-Yu Lai, Yu-Pin Lan, Si-Wei Huang, Jun-Rong Chen, Yung-Chi Wu, Wen-Feng Hsieh, and Hui Deng, "Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity," Opt. Express 20, 5530-5537 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-5-5530


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992). [CrossRef] [PubMed]
  2. H. Den, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82(2), 1489–1537 (2010). [CrossRef]
  3. H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science298(5591), 199–202 (2002). [CrossRef] [PubMed]
  4. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006). [CrossRef] [PubMed]
  5. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science316(5827), 1007–1010 (2007). [CrossRef] [PubMed]
  6. S. Utsunomiya, L. Tian, G. Roumpos, C. W. Lai, N. Kumada, T. Fujisawa, M. Kuwata-Gonokami, A. Löffler, S. Höfling, A. Forchel, and Y. Yamamoto, “Observation of Bogoliubov excitations in exciton-polariton condensates,” Nat. Phys.4(9), 700–705 (2008). [CrossRef]
  7. H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A.100(26), 15318–15323 (2003). [CrossRef] [PubMed]
  8. S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007). [CrossRef] [PubMed]
  9. G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett.93(5), 051102 (2008). [CrossRef]
  10. J. J. Baumberg, A. V. Kavokin, S. Christopoulos, A. J. D. Grundy, R. Butté, G. Christmann, D. D. Solnyshkov, G. Malpuech, G. B. von Högersthal, E. Feltin, J.-F. Carlin, and N. Grandjean, “Spontaneous polarization buildup in a room-temperature polariton laser,” Phys. Rev. Lett.101(13), 136409 (2008). [CrossRef] [PubMed]
  11. J. Levrat, R. Butté, T. Christian, M. Glauser, E. Feltin, J.-F. Carlin, N. Grandjean, and Y. G. Rubo, “Pinning and depinning of the polarization of exciton-polariton condensates at room temperature,” Phys. Rev. Lett.104(16), 166402 (2010). [CrossRef] [PubMed]
  12. J. J. Baumberg, P. G. Savvidis, R. M. Stevenson, A. I. Tartakovskii, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation,” Phys. Rev. B62(24), R16247–R16250 (2000). [CrossRef]
  13. C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lemaître, J. Bloch, Ph. Roussignol, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature440(7086), 904–907 (2006). [CrossRef] [PubMed]
  14. L. Ferrier, S. Pigeon, E. Wertz, M. Bamba, P. Senellart, I. Sagnes, A. Lemaître, C. Ciuti, and J. Bloch, “Polariton parametric oscillation in a single micropillar cavity,” Appl. Phys. Lett.97(3), 031105 (2010). [CrossRef]
  15. K. Davis, M. Mewes, M. Andrews, N. van Druten, D. Durfee, D. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett.75(22), 3969–3973 (1995). [CrossRef] [PubMed]
  16. I. R. Sellers, F. Semond, M. Leroux, J. Massies, M. Zamfirescu, F. Stokker-Cheregi, M. Gurioli, A. Vinattieri, M. Colocci, A. Tahraoui, and A. A. Khalifa, “Polariton emission and reflectivity in GaN microcavities as a function of angle and temperature,” Phys. Rev. B74(19), 193308 (2006). [CrossRef]
  17. M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B65(16), 161205 (2002). [CrossRef]
  18. J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett.94(6), 061103 (2009). [CrossRef]
  19. J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-F. Hsieh, S.-C. Wang, and H. Deng, “Characteristics of exciton-polaritons in ZnO-based hybrid microcavities,” Opt. Express19(5), 4101–4112 (2011). [CrossRef] [PubMed]
  20. S. Kalusniak, S. Sadofev, S. Halm, and F. Henneberger, “Vertical cavity surface emitting laser action of an all monolithic ZnO-based microcavity,” Appl. Phys. Lett.98(1), 011101 (2011). [CrossRef]
  21. M. Zamfirescu, A. Kavokin, B. Gil, and G. Malpuech, “ZnO as a material mostly adapted for realization of room-temperature polariton lasers,” Phys. Status Solidi195(3), 563–567 (2003) (a). [CrossRef]
  22. S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B78(23), 235323 (2008). [CrossRef]
  23. F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, and P. Schwendimann, “Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons,” Phys. Rev. B56(12), 7554–7563 (1997). [CrossRef]
  24. A. I. Tartakovskii, M. Emam-Ismail, R. M. Stevenson, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, J. J. Baumberg, and J. S. Roberts, “Relaxation bottleneck and its suppression in semiconductor microcavities,” Phys. Rev. B62(4), R2283–R2286 (2000). [CrossRef]
  25. R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B80(23), 233301 (2009). [CrossRef]
  26. P. G. Lagoudakis, M. D. Martin, J. J. Baumberg, G. Malpuech, and A. Kavokin, “Coexistence of low threshold lasing and strong coupling in microcavities,” J. Appl. Phys.95(5), 2487 (2004). [CrossRef]
  27. J. Dai, C. X. Xu, K. Zheng, C. G. Lv, and Y. P. Cui, “Whispering gallery-mode lasing in ZnO microrods at room temperature,” Appl. Phys. Lett.95(24), 241110 (2009). [CrossRef]
  28. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  29. V. M. Markushev, V. V. Ursaki, M. V. Ryzhkov, C. M. Briskina, I. M. Tiginyanu, E. V. Rusu, and A. A. Zakhidov, “ZnO lasing in complex systems with tetrapods,” Appl. Phys. B93(1), 231–238 (2008). [CrossRef]
  30. C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, “Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing,” Phys. Rev. B75(11), 115203 (2007). [CrossRef]
  31. C. H. Henry, “Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982). [CrossRef]
  32. A. P. D. Love, D. N. Krizhanovskii, D. M. Whittaker, R. Bouchekioua, D. Sanvitto, S. A. Rizeiqi, R. Bradley, M. S. Skolnick, P. R. Eastham, R. André, and S. Dang, “Intrinsic decoherence mechanisms in the microcavity polariton condensate,” Phys. Rev. Lett.101(6), 067404 (2008). [CrossRef] [PubMed]
  33. D. M. Whittaker and P. R. Eastham, “Coherence properties of the microcavity polariton condensate,” Europhys. Lett.87(2), 27002 (2009). [CrossRef]
  34. H. Haug and S. Koch, “On the Theory of Laser Action in Dense Exciton System,” Phys. Status Solidi82(2), 531–543 (1977) (b). [CrossRef]
  35. H. Deng, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Spatial coherence of a polariton condensate,” Phys. Rev. Lett.99(12), 126403 (2007). [CrossRef] [PubMed]
  36. C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature450(7169), 529–532 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited