OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5538–5546

Efficient frequency shifting of dispersive waves at solitons

Amol Choudhary and Friedrich König  »View Author Affiliations


Optics Express, Vol. 20, Issue 5, pp. 5538-5546 (2012)
http://dx.doi.org/10.1364/OE.20.005538


View Full Text Article

Enhanced HTML    Acrobat PDF (978 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate frequency redshifting and blueshifting of dispersive waves at group velocity horizons of solitons in fibers. The tunnelling probability of waves that cannot propagate through the fiber-optical solitons (horizons) is measured and described analytically. For shifts up to two times the soliton spectral width, the waves frequency shift with probability exceeding 90% rather than tunnelling through the soliton in our experiment. We also discuss key features of fiber optical Cherenkov radiation such as high efficiency and large bandwidth within this framework.

© 2012 OSA

OCIS Codes
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 26, 2011
Revised Manuscript: December 30, 2011
Manuscript Accepted: February 5, 2012
Published: February 22, 2012

Citation
Amol Choudhary and Friedrich König, "Efficient frequency shifting of dispersive waves at solitons," Opt. Express 20, 5538-5546 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-5-5538


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett.23, 142–144 (1973). [CrossRef]
  2. L. F. Mollenauer, R. H. Stolen, and J. G. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett.45, 1095–1098 (1980). [CrossRef]
  3. K. Kitayama, Y. Kimura, and S. Seikai, “Fiber-optic logic gate,” Appl. Phys. Lett.46, 317–319 (1985). [CrossRef]
  4. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett.13, 56–58 (1988). [CrossRef] [PubMed]
  5. S. Trillo, S. Wabnitz, E. M. Wright, and G. I. Stegeman, “Soliton switching in fiber nonlinear directional couplers,” Opt. Lett.13, 672–674 (1988). [CrossRef] [PubMed]
  6. M. J. LaGasse, D. Liu-Wong, J. G. Fujimoto, and H. A. Haus, “Ultrafast switching with a single-fiber interferometer,” Opt. Lett.14311–313 (1989). [CrossRef] [PubMed]
  7. D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics4, 3–5 (2010). [CrossRef]
  8. A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett.106, 163901 (2011). [CrossRef] [PubMed]
  9. M. Nazarathy, Z. Zalevsky, A. Rudnitsky, B. Larom, A. Nevet, M. Orenstein, and B. Fischer, “All-optical linear reconfigurable logic with nonlinear phase erasure,” J. Opt. Soc. Am. A26, A21–A39 (2009). [CrossRef]
  10. S. Akhmanov, A. Sukhorukov, and A. Chirkin, “Nonstationary phenomena and spacetime analogy in nonlinear optics,” Sov. Phys. JETP28, 748–757 (1969).
  11. M. N. Islam, L. F. Mollenauer, R. H. Stolen, J. R. Simpson, and H. T. Shang, “Cross-phase modulation in optical fibers,” Opt. Lett.12, 625–627 (1987). [CrossRef] [PubMed]
  12. J. P. Gordon, “Dispersive perturbations of solitons of the nonlinear Schrodinger-equation,” J. Opt. Soc. Am. B9, 91–97 (1992). [CrossRef]
  13. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys. JETP34, 62–69 (1972).
  14. J. R. Taylor, Optical Solitons Theory and Experiment (Cambridge Press, 2005).
  15. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21, 1547–1549 (1996). [CrossRef] [PubMed]
  16. P. Russell, “Photonic crystal fibers,” Science299, 358–362 (2003). [CrossRef] [PubMed]
  17. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett.11, 464–466 (1986). [CrossRef] [PubMed]
  18. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51, 2602–2607 (1995). [CrossRef] [PubMed]
  19. L. Tartara, I. Cristiani, and V. Degiorgio, “Blue light and infrared continuum generation by soliton fission in a microstructured fiber,” Appl. Phys. B77, 307–311 (2003). [CrossRef]
  20. N. Nishizawa and T. Goto, “Characteristics of pulse trapping by ultrashort soliton pulse in optical fibers across zerodispersion wavelength,” Opt. Express10, 1151–1159 (2002). [PubMed]
  21. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics1, 653–656 (2007). [CrossRef]
  22. A. Efimov, A. Yulin, D. Skryabin, J. C. Knight, N. Joly, F. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett.95, 213902 (2005). [CrossRef] [PubMed]
  23. T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science319, 1367–1370 (2008). [CrossRef] [PubMed]
  24. S. Hill, C. E. Kuklewicz, U. Leonhardt, and F. König, “Evolution of light trapped by a soliton in a microstructured fiber,” Opt. Express1713588–13600 (2009). [CrossRef] [PubMed]
  25. S. Robertson and U. Leonhardt, “Frequency shifting at fiber-optical event horizons: the effect of Raman deceleration,” Phys. Rev. A81, 063835 (2010). [CrossRef]
  26. W. G. Unruh, “Experimental black-hole evaporation,” Phys. Rev. Lett.46, 1351–1353 (1981). [CrossRef]
  27. S. M. Hawking, “Black-hole explosions,” Nature248, 30–31 (1974). [CrossRef]
  28. S. M. Hawking, “Particle creation by black-holes,” Commun. Math. Phys.43, 199–220 (1975). [CrossRef]
  29. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2006).
  30. D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E72, 016619 (2005). [CrossRef]
  31. V. E. Lobanov and A. P. Sukhorukov, “Total reflection, frequency, and velocity tuning in optical pulse collision in nonlinear dispersive media,” Phys. Rev. A, 82, 033809 (2010). [CrossRef]
  32. N. N. Rosanov, N. V. Vysotina, and A. N. Shatsev, “Forward light reflection from a moving inhomogeneity,” JETP Lett.93, 308–312 (2011). [CrossRef]
  33. L. D. Landau and E. M. Lifshitz, Quantum Mechanics3, (Butterworth-Heinemann, 1981).
  34. Details of this technique will be published elsewhere.
  35. H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express179858–9872 (2009). [CrossRef] [PubMed]
  36. H. Tu and S. A. Boppart, “Ultraviolet-visible non-supercontinuum ultrafast source enabled by switching single silicon strand-like photonic crystal fibers,” Opt. Express1717983–17988 (2009). [CrossRef] [PubMed]
  37. G. Q. Chang, L. J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt.Lett.35, 2361–2363, (2010). [CrossRef] [PubMed]
  38. G. Q. Chang, L. J. Chen, and F. X. Kärtner, “Fiber-optic Cherenkov radiation in the few-cycle regime,” Opt. Express19, 6635–6647 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited