OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5566–5575

Spatially resolved modal spectroscopy of Er:Yb doped multifilament-core fiber amplifier

Julien Le Gouët, Julien Delaporte, Laurent Lombard, and Guillaume Canat  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5566-5575 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1494 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spatially resolved spectral (S2) imaging method is applied on an active microstructured fiber, with a multi-filament core (MFC). This type of fiber has been designed to be the last amplifying stage of a source for a long range coherent lidar. Studying the influence of the bending radius on the modal content with or without gain, we demonstrate that an upper-bound of the high-order modes content can be found by performing the S2 imaging on the bleached fiber. S2 imaging is then used to verify that the output beam of the MFC fiber can be made effectively single-mode. We also show that it can be simply adapted for measuring the fiber birefringence. Finally, a comparison of the MFC fiber mode area with that of a standard large mode area Erbium doped step index fiber illustrates the interest of the MFC structure for high power amplifiers.

© 2012 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 10, 2011
Revised Manuscript: December 27, 2011
Manuscript Accepted: December 30, 2011
Published: February 22, 2012

Julien Le Gouët, Julien Delaporte, Laurent Lombard, and Guillaume Canat, "Spatially resolved modal spectroscopy of Er:Yb doped multifilament-core fiber amplifier," Opt. Express 20, 5566-5575 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express15(13), 8290–8299 (2007). [CrossRef] [PubMed]
  2. W. Shi, E. B. Petersen, Z. Yao, D. T. Nguyen, J. Zong, M. A. Stephen, A. Chavez-Pirson, and N. Peyghambarian, “Kilowatt-level stimulated-Brillouin-scattering-threshold monolithic transform-limited 100 ns pulsed fiber laser at 1530 nm,” Opt. Lett.35(14), 2418–2420 (2010). [CrossRef] [PubMed]
  3. S. Ramachandran, J. Fini, M. Mermelstein, J. Nicholson, S. Ghalmi, and M. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev.2(6), 429–448 (2008). [CrossRef]
  4. V. Fomin, M. Abramov, A. Ferin, A. Abramov, D. Mochalov, N. Platonov, and V. Gapontsev, “10 kW single-mode fiber laser,” presented at 5th International Symposium on High-Power Fiber Lasers and Their Applications (2010).
  5. G. Canat, S. Jetschke, S. Unger, L. Lombard, P. Bourdon, J. Kirchhof, V. Jolivet, A. Dolfi, and O. Vasseur, “Multifilament-core fibers for high energy pulse amplification at 1.5 microm with excellent beam quality,” Opt. Lett.33(22), 2701–2703 (2008). [CrossRef] [PubMed]
  6. G. Canat, L. Lombard, P. Bourdon, V. Jolivet, O. Vasseur, S. Jetschke, S. Unger, and J. Kirchhof, “Measurement and modeling of Brillouin scattering in a multifilament core fiber,” in CLEO 2009, JTuB3.
  7. G. Canat, R. Spittel, S. Jetschke, L. Lombard, and P. Bourdon, “Analysis of the multifilament core fiber using the effective index theory,” Opt. Express18(5), 4644–4654 (2010). [CrossRef] [PubMed]
  8. A. Barthelemy, P. Facq, C. Froehly, and J. Arnaud, “New method for precise characterisation of multimode optical fibres,” Electron. Lett.18(6), 247–249 (1982). [CrossRef]
  9. G. Brun, I. Verrier, M. Ramos, J.-P. Goure, P. Ottavi, and A.-M. Lambert, “Measurement of mode times of flight in multimode fibers by an interferometric method using polychromatic light: theoretical approach and experimental results,” Appl. Opt.35(7), 1129–1134 (1996). [CrossRef] [PubMed]
  10. J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron.15(1), 61–70 (2009). [CrossRef]
  11. J. Nicholson, J. Jasapara, A. Desantolo, E. Monberg, and F. Dimarcello, “Characterizing the modes of a core-pumped, large-mode area Er fiber using spatially and spectrally resolved imaging,” in CLEO 2009, CWD4.
  12. T. Kaiser, D. Flamm, S. Schröter, and M. Duparré, “Complete modal decomposition for optical fibers using CGH-based correlation filters,” Opt. Express17(11), 9347–9356 (2009). [CrossRef] [PubMed]
  13. D. N. Schimpf, R. A. Barankov, and S. Ramachandran, “Cross-correlated (C2) imaging of fiber and waveguide modes,” Opt. Express19(14), 13008–13019 (2011). [CrossRef] [PubMed]
  14. D. M. Nguyen, S. Blin, T. N. Nguyen, S. D. Le, L. Provino, M. Thual, and T. Chartier, “Modal decomposition technique for multimode fibers,” Appl. Opt., in press.
  15. M. Midrio, M. P. Singh, and C. G. Someda, “The space filling mode of holey fibers: an analytical vectorial solution,” J. Lightwave Technol.18(7), 1031–1037 (2000). [CrossRef]
  16. R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron.43(10), 899–909 (2007). [CrossRef]
  17. V. Kuhn, S. Unger, S. Jetschke, D. Kracht, J. Neumann, J. Kirchhof, and P. Weßels, “Experimental comparison of fundamental mode content in Er:Yb-codoped LMA fibers with multifilament- and pedestal-design cores,” J. Lightwave Technol.28, 3212–3219 (2010).
  18. S. C. Rashleigh, “Measurement of fiber birefringence by wavelength scanning: effect of dispersion,” Opt. Lett.8(6), 336–338 (1983). [CrossRef] [PubMed]
  19. M. Legre, M. Wegmuller, and N. Gisin, “Investigation of the ratio between phase and group birefringence in optical single-mode fibers,” J. Lightwave Technol.21(12), 3374–3378 (2003). [CrossRef]
  20. P. L. Chu and R. A. Sammut, “Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,” J. Lightwave Technol.LT-2, 650–662 (1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited