OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5607–5612

Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures

Isabelle Staude, Christopher McGuinness, Andreas Frölich, Robert L. Byer, Eric Colby, and Martin Wegener  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5607-5612 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1823 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The quest for less costly and more compact high-energy particle accelerators makes research on alternative acceleration mechanisms an important enterprise. From the multitude of suggested concepts, the photonic accelerator design by B. M. Cowan [Phys. Rev. ST Accel. Beams 11, 011301 (2008)] stands out by its distinct potential of creating an accelerator on a chip [Proposal E-163, SLAC (2001)]. Herein, electrons are accelerated by the axial electric field of a strongly confined optical mode of an air waveguide within a silicon-based three-dimensional photonic band-gap material. Using a combination of direct laser writing and silicon double inversion, we here present the first experimental realization of this complex structure. Optical spectroscopy provides unambiguous evidence for the existence of an accelerating waveguide mode with axial polarization.

© 2012 OSA

OCIS Codes
(160.5293) Materials : Photonic bandgap materials
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

Original Manuscript: December 20, 2011
Manuscript Accepted: January 11, 2012
Published: February 22, 2012

Virtual Issues
February 23, 2012 Spotlight on Optics

Isabelle Staude, Christopher McGuinness, Andreas Frölich, Robert L. Byer, Eric Colby, and Martin Wegener, "Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures," Opt. Express 20, 5607-5612 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  3. Z.-Y. Li and K. M. Ho, “Waveguides in three-dimensional layer-by-layer photonic crystals,” J. Opt. Soc. Am. B20(5), 801–809 (2003). [CrossRef]
  4. X. E. Lin, “Photonic band gap fiber accelerator,” Phys. Rev. ST Accel. Beams 4(5), 051301 (2001). [CrossRef]
  5. R. H. Siemann, “Energy efficiency of laser driven, structure based accelerators,” Phys. Rev. ST Accel. Beams 7(6), 061303 (2004). [CrossRef]
  6. B. M. Cowan, “Three-dimensional dielectric photonic crystal structures for laser-driven acceleration,” Phys. Rev. ST Accel. Beams 11(1), 011301 (2008). [CrossRef]
  7. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun.89(5), 413–416 (1994). [CrossRef]
  8. C. Sears, E. Colby, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. Siemann, J. Spencer, D. Walz, T. Plettner, and R. Byer, “Production and characterization of attosecond electron bunch trains,” Phys. Rev. ST Accel. Beams 11(6), 061301 (2008). [CrossRef]
  9. C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. ST Accel. Beams 11(10), 101301 (2008). [CrossRef]
  10. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71(11), 115109 (2005). [CrossRef]
  11. K. Soong, R. L. Byer, C. McGuinness, E. Peralta, and E. R. Colby, “Experimental Determination of Damage Threshold Characteristics of IR Compatible Optical Materials,” in Proceedings of Particle Accelerator Conference 2011, (2011) pp. 277–279.
  12. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004). [CrossRef] [PubMed]
  13. N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mater.18(4), 457–460 (2006). [CrossRef]
  14. I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35(7), 1094–1096 (2010). [CrossRef] [PubMed]
  15. I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-band-gap materials by direct laser writing and silicon double inversion,” Opt. Lett.36(1), 67–69 (2011). [CrossRef] [PubMed]
  16. C. McGuinness, E. R. Colby, and R. L. Byer, “Accelerating electrons with lasers and photonic crystals,” J. Mod. Opt.56(18-19), 2142–2147 (2009). [CrossRef]
  17. V. Lujala, J. Skarp, M. Tammenmaa, and T. Suntola, “Atomic layer epitaxy growth of doped zinc oxide thin films from organometals,” Appl. Surf. Sci.82–83, 34–40 (1994). [CrossRef]
  18. A. Frölich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express1(5), 883–889 (2011). [CrossRef]
  19. S. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2(1), 52–56 (2008). [CrossRef]
  20. S. Kawashima, K. Ishizaki, and S. Noda, “Light propagation in three-dimensional photonic crystals,” Opt. Express18(1), 386–392 (2010). [CrossRef] [PubMed]
  21. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001). [CrossRef] [PubMed]
  22. C. D. Barnes, R. L. Byer, E. R. Colby, B. M. Cowan, R. J. Noble, D. T. Palmer, T. Plettner, R. H. Siemann, J. Spencer, and D. Walz, “Laser Acceleration of Electrons in Vacuum,” Proposal E-163, SLAC (2001). http://www-project.slac.stanford.edu/E163/E163ProposalClean.pdf

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited