OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5644–5651

Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm

Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5644-5651 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (848 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A comparison between the fluorescence spectra of the Nd-doped vanadate crystals (Nd:YVO4, Nd:GdVO4, Nd:LuVO4) for the 4F3/24I11/2 transition is studied. We numerically analyze the condition of gain-to-loss balance via an uncoated intracavity etalon to achieve the dual-wavelength operation. We further experimentally demonstrate the orthogonally polarized dual-wavelength laser with a single Nd:LuVO4 crystal. The simultaneous dual-wavelength Nd:LuVO4 laser at 1085.7 nm in σ polarization and 1088.5 nm in π polarization is realized. At an incident pump power of 12 W, the average output power obtained at 1085.7 nm and 1088.5 nm is 0.4 W and 1.7 W, respectively.

© 2012 OSA

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 19, 2012
Revised Manuscript: February 13, 2012
Manuscript Accepted: February 13, 2012
Published: February 22, 2012

Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, "Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm," Opt. Express 20, 5644-5651 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Weigl, “A generalized technique of two-wavelength, nondiffuse holographic interferometry,” Appl. Opt.10(1), 187–192 (1971). [CrossRef] [PubMed]
  2. N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz.46, 1573–1583 (1982).
  3. R. W. Farley and P. D. Dao, “Development of an intracavity-summed multiple-wavelength Nd:YAG laser for a rugged, solid-state sodium lidar system,” Appl. Opt.34(21), 4269–4273 (1995). [CrossRef] [PubMed]
  4. Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B79(2), 207–210 (2004). [CrossRef]
  5. S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel)11(6), 6125–6130 (2011). [CrossRef] [PubMed]
  6. Y. Lu, B. G. Zhang, E. B. Li, D. G. Xu, R. Zhou, X. Zhao, F. Ji, T. L. Zhang, P. Wang, and J. Q. Yao, “High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition,” Opt. Commun.262(2), 241–245 (2006). [CrossRef]
  7. K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912 and 1063 nm in Nd:GdVO4,” Appl. Phys. B86(1), 65–70 (2007). [CrossRef]
  8. H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, “Simultaneous multiple wavelength laser action in various Neodymium host crystals,” IEEE J. Quantum Electron.27(10), 2315–2318 (1991). [CrossRef]
  9. Y. F. Chen, “CW dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B70(4), 475–478 (2000). [CrossRef]
  10. X. Yu, C. L. Li, G. C. Sun, B. Z. Li, X. Y. Chen, M. Zhao, J. B. Wang, X. H. Zhang, and G. Y. Jin, “Continuous-wave dual-wavelength operation of a diode-end-pumped Nd:LuVO4 laser,” Laser Phys.21(6), 1039–1041 (2011). [CrossRef]
  11. H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. B. Shi, X. Y. Zhang, and M. H. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett.34(2), 151–153 (2009). [CrossRef] [PubMed]
  12. H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. Y. Zhang, R. J. Lan, and M. H. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett.94(4), 041126 (2009). [CrossRef]
  13. R. Zhou, B. G. Zhang, X. Ding, Z. Q. Cai, W. Q. Wen, P. Wang, and J. Q. Yao, “Continuous-wave operation at 1386 nm in a diode-end-pumped Nd:YVO4 laser,” Opt. Express13(15), 5818–5824 (2005). [CrossRef] [PubMed]
  14. H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B90(3-4), 451–454 (2008). [CrossRef]
  15. Y. F. Chen, M. L. Ku, and K. W. Su, “High-power efficient tunable Nd:GdVO4 laser at 1083 nm,” Opt. Lett.30(16), 2107–2109 (2005). [CrossRef] [PubMed]
  16. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett.27(16), 1454–1456 (2002). [CrossRef] [PubMed]
  17. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005). [CrossRef]
  18. J. B. Baxter and G. W. Guglietta, “Terahertz spectroscopy,” Anal. Chem.83(12), 4342–4368 (2011). [CrossRef] [PubMed]
  19. C. B. Reid, E. Pickwell-MacPherson, J. G. Laufer, A. P. Gibson, J. C. Hebden, and V. P. Wallace, “Accuracy and resolution of THz reflection spectroscopy for medical imaging,” Phys. Med. Biol.55(16), 4825–4838 (2010). [CrossRef] [PubMed]
  20. L. G. Fei and S. L. Zhang, “The discovery of nanometer fringes in laser self-mixing interference,” Opt. Commun.273(1), 226–230 (2007). [CrossRef]
  21. S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol.21(5), 054016 (2010). [CrossRef]
  22. C. Ren and S. L. Zhang, “Diode-pumped dual-frequency microchip Nd:YAG laser with tunable frequency difference,” J. Phys. D Appl. Phys.42(15), 155107 (2009). [CrossRef]
  23. X. P. Yan, Q. Liu, H. L. Chen, F. Xing, M. L. Gong, and D. S. Wang, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B19(8), 084202 (2010). [CrossRef]
  24. B. Wu, P. P. Jiang, D. Z. Yang, T. Chen, J. Kong, and Y. H. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm,” Opt. Express17(8), 6004–6009 (2009). [CrossRef] [PubMed]
  25. C. Maunier, J. L. Doualan, R. Moncorge, A. Speghini, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B19(8), 1794–1800 (2002). [CrossRef]
  26. Y. F. Chen, “cw dual-wavelength operation of a diode-pumped Nd:YVO4 laser,” Appl. Phys. B70(4), 475–478 (2000). [CrossRef]
  27. C. A. Bennett, Principles of Physical Optics (Wiley, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited