OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5658–5682

Absolute distance measurement with micrometer accuracy using a Michelson interferometer and the iterative synthetic wavelength principle

Khaled Alzahrani, David Burton, Francis Lilley, Munther Gdeisat, Frederic Bezombes, and Mohammad Qudeisat  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5658-5682 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2371 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel system that can measure absolute distances of up to 300 mm with an uncertainty of the order of one micrometer, within a timeframe of 40 seconds. The proposed system uses a Michelson interferometer, a tunable laser, a wavelength meter and a computer for analysis. The principle of synthetic wave creation is used in a novel way in that the system employs an initial low precision estimate of the distance, obtained using a triangulation, or time-of-flight, laser system, or similar, and then iterates through a sequence of progressively smaller synthetic wavelengths until it reaches micrometer uncertainties in the determination of the distance. A further novel feature of the system is its use of Fourier transform phase analysis techniques to achieve sub-wavelength accuracy. This method has the major advantages of being relatively simple to realize, offering demonstrated high relative precisions better than 5 × 10−5. Finally, the fact that this device does not require a continuous line-of-sight to the target as is the case with other configurations offers significant advantages.

© 2012 OSA

OCIS Codes
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 14, 2011
Revised Manuscript: January 13, 2012
Manuscript Accepted: February 10, 2012
Published: February 23, 2012

Khaled Alzahrani, David Burton, Francis Lilley, Munther Gdeisat, Frederic Bezombes, and Mohammad Qudeisat, "Absolute distance measurement with micrometer accuracy using a Michelson interferometer and the iterative synthetic wavelength principle," Opt. Express 20, 5658-5682 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Ikezawa, K. Isozaki, E. Ogita, and T. Ueda, “Measurement of absolute distance employing a tunable CW dye laser,” IEEE Trans. Instrum. Meas.41(1), 36–39 (1992). [CrossRef]
  2. C. E. Towers, D. T. Reid, W. N. MacPherson, P. R. J. Maier, and D. P. Towers, “Fibre interferometer for multi-wavelength interferometry with a femtosecond laser,” J. Opt. A, Pure Appl. Opt.7(6), S415–S419 (2005). [CrossRef]
  3. R. Dändliker, Y. Salvad, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt.29(3), 105–114 (1998). [CrossRef]
  4. S. Le Floch, Y. Salvadé, R. Mitouassiwou, and P. Favre, “Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry,” Appl. Opt.47(16), 3027–3031 (2008). [CrossRef] [PubMed]
  5. L. Hartmann, K. Meiners-Hagen, and A. Abou-Zeid, “An absolute distance interferometer with two external cavity diode lasers,” Meas. Sci. Technol.19(4), 045307 (2008). [CrossRef]
  6. J. Thiel, T. Pfeifer, and M. Hartmann, “Interferometric measurement of absolute distances of up to 40 m,” Measurement16(1), 1–6 (1995). [CrossRef]
  7. H.-J. Yang, S. Nyberg, and K. Riles, “High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions,” Nucl. Instrum. Methods Phys. Res. A575(3), 395–401 (2007). [CrossRef]
  8. G. P. Barwood, P. Gill, and W. R. C. Rowley, “High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes,” Meas. Sci. Technol.9(7), 1036–1041 (1998). [CrossRef]
  9. T. Kinder and K.-D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A, Pure Appl. Opt.4(6), S364–S368 (2002). [CrossRef]
  10. L. Shaozeng and Z. Yang, “Contribution of laser technology in the development of metrology,” Measurement7(2), 55–59 (1989). [CrossRef]
  11. A. Cabral and J. Rebordão, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng.46(073602), 1–10 (2007).
  12. P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in A hostile environment,” Meas. Sci. Technol.15(11), 2175–2187 (2004). [CrossRef]
  13. S. M. Gibson, P. A. Coe, A. Mitra, D. F. Howell, and R. B. Nickerson, “Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry,” Opt. Lasers Eng.43(7), 815–831 (2005). [CrossRef]
  14. R. Schödel, “Ultra-high accuracy thermal expansion measurements with PTB’s precision interferometer,” Meas. Sci. Technol.19(8), 084003 (2008). [CrossRef]
  15. A. Abou-Zeid, K. H. Bechstein, C. Enghave, and H. Kunzmann, “A multichannel diode laser interferometer for displacement measurements on a CMM,” Annals of the ClRP45(1), 489–492 (1996). [CrossRef]
  16. U. Minoni, L. Rovati, M. Bonardi, and F. Docchio, “Metrological characterization of a novel absolute distance meter based on dispersive comb-spectrum interferometry,” in Proc. Of IEEE Instrumentation and Measurement Technology Conference, (St. Paul, Minnesota USA, 18–21 May 1998), pp. 1137–1140.
  17. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt.47(14), 2715–2720 (2008). [CrossRef] [PubMed]
  18. D. Guo and M. Wang, “Self-mixing interferometry based on a double-modulation technique for absolute distance measurement,” Appl. Opt.46(9), 1486–1491 (2007). [CrossRef] [PubMed]
  19. P. B. Harrison, R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “Component position measurement through polymer material by broadband absolute distance interferometry,” Meas. Sci. Technol.16(10), 2066–2071 (2005). [CrossRef]
  20. A. Majumdar and H. Huang, “Development of an in-fiber white-light interferometric distance sensor for absolute measurement of arbitrary small distances,” Appl. Opt.47(15), 2821–2828 (2008). [CrossRef] [PubMed]
  21. M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas.56(5), 1894–1900 (2007). [CrossRef]
  22. V. Gusmeroli and M. Martinelli, “Two-wavelength interferometry filtering by superluminescent source,” Opt. Commun.94, 309–312 (1992). [CrossRef]
  23. L. Kervevan, H. Gilles, S. Girard, M. Laroche, and Y. Monfort, “Absolute distance measurement with heterodyne optical feedback on a Yb:Er glass laser,” Appl. Opt.45(17), 4084–4091 (2006). [CrossRef] [PubMed]
  24. U. Schnell, E. Zimmermann, and R. Dändliker, “Absolute distance measurement with synchronously sampled white-light channelled spectrum interferometry,” Pure Appl. Opt.4(5), 643–651 (1995). [CrossRef]
  25. C. Yin, Z. Chao, D. Lin, Y. Xu, and J. Xu, “Absolute length measurement using changeable synthetic wavelength chain,” Opt. Eng.41(4), 746–750 (2002). [CrossRef]
  26. Y. Zhao, T. Zhou, and D. Li, “Heterodyne absolute Distance Interferometer with a dual-mode HeNe laser,” Opt. Eng.38(2), 246–249 (1999). [CrossRef]
  27. S.-H. Lu and C.-C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol.13(9), 1382–1387 (2002). [CrossRef]
  28. K.-H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. Technical Note29, 179–182 (1998).
  29. G. L. Bourdet and A. G. Orszag, “Absolute distance measurements by CO2 laser multiwavelength interferometry,” Appl. Opt.18(2), 225–227 (1979). [CrossRef] [PubMed]
  30. H. Yu, C. Aleksoff, and J. Ni, “A multiple height-transfer interferometric technique,” Opt. Express19(17), 16365–16374 (2011). [CrossRef] [PubMed]
  31. C. Aleksoff and H. Yu, “Discrete step wavemeter,” Proc. SPIE7790, 77900H, 77900H-10 (2010). [CrossRef]
  32. J. C. Marron and K. W. Gleichman, “Three-dimensional imaging using a tunable laser source,” Opt. Eng.39(1), 47–51 (2000). [CrossRef]
  33. J. Tan, H. Yang, P. Hu, and X. Diao, “Identification and elimination of half-synthetic wavelength error for multi-wavelength long absolute distance measurement,” Meas. Sci. Technol.22(11), 115301 (2011). [CrossRef] [PubMed]
  34. R. Schödel, “Ultra-high accuracy thermal expansion measurements with PTB’s precision interferometer,” Meas. Sci. Technol.19(8), 084003 (2008). [CrossRef]
  35. www.longdistanceproject.eu
  36. “TLB- VelocityTM Widely Tunable Lasers,” Accessed on 1st February 2011, http://www.newfocus.com/products/documents/catalog/216.pdf .
  37. “621 Series Laser Wavelength Meter,” Accessed on 1st February 2011, http://www.bristol-inst.com/index_files/pubwebdocs/brochure621wavelengthmeter.pdf .
  38. P. Hariharan, Basics of interferometry, (Elsevier, Second Edition 2007).
  39. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am.72(1), 156–160 (1982). [CrossRef]
  40. D. J. Bone, H. A. Bachor, and R. J. Sandeman, “Fringe-pattern analysis using a 2-D Fourier transform,” Appl. Opt.25(10), 1653–1660 (1986). [CrossRef] [PubMed]
  41. G. James, Modern engineering mathematics, pp. 52–53, (Prentice Hall, 2008).
  42. C. E. Towers, D. P. Towers, and J. D. C. Jones, “Optimum frequency selection in multifrequency interferometry,” Opt. Lett.28(11), 887–889 (2003). [CrossRef] [PubMed]
  43. J. Skiba-Szymańska and S. Patela, “Measurement accuracy of the white light interferometer with reference light beam,” International Students and Young Scientists Workshop „Photonics and Microsystems” (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited