OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5696–5706

Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography

Cameron L. C. Smith, Boris Desiatov, Ilya Goykmann, Irene Fernandez-Cuesta, Uriel Levy, and Anders Kristensen  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5696-5706 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1855 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate spectral filtering with state-of-the-art Bragg gratings in plasmonic V-groove waveguides fabricated by wafer scale processing based on nanoimprint lithography. Transmission spectra of the devices having 16 grating periods exhibit spectral rejection of the channel plasmon polaritons with 8.2 dB extinction ratio and −3 dB bandwidth of Δλ = 39.9 nm near telecommunications wavelengths. Near-field scanning optical microscopy measurements verify spectral reflection from the grating structures, and the oscillations of propagating modes along grating-less V-grooves correspond well with effective refractive index values calculated by finite element simulations in COMSOL. The results represent advancement towards the implementation of plasmonic V-grooves with greater functional complexity and mass-production compatibility.

© 2012 OSA

OCIS Codes
(230.7380) Optical devices : Waveguides, channeled
(240.6680) Optics at surfaces : Surface plasmons
(350.2770) Other areas of optics : Gratings

ToC Category:
Optics at Surfaces

Original Manuscript: December 12, 2011
Revised Manuscript: February 15, 2012
Manuscript Accepted: February 18, 2012
Published: February 23, 2012

Cameron L. C. Smith, Boris Desiatov, Ilya Goykmann, Irene Fernandez-Cuesta, Uriel Levy, and Anders Kristensen, "Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography," Opt. Express 20, 5696-5706 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007). [CrossRef]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  5. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non diffraction-limited light transport by gold nanowires,” Europhys. Lett.60(5), 663–669 (2002). [CrossRef]
  6. R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B74(16), 165415 (2006). [CrossRef]
  7. E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express16(1), 45–57 (2008). [CrossRef] [PubMed]
  8. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23(17), 1331–1333 (1998). [CrossRef] [PubMed]
  9. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003). [CrossRef] [PubMed]
  10. S. Lin, M. Li, E. Dujardin, C. Girard, and S. Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. (Deerfield Beach Fla.)17(21), 2553–2559 (2005). [CrossRef]
  11. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B78(16), 165431 (2008). [CrossRef]
  12. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006). [CrossRef]
  13. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008). [CrossRef]
  14. E. N. Economou, “Surface Plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969). [CrossRef]
  15. I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B66(3), 035403 (2002). [CrossRef]
  16. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channelling surface plasmons,” Appl. Phys., A Mater. Sci. Process.89(2), 225–231 (2007). [CrossRef]
  17. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  18. I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett.97(14), 141106 (2010). [CrossRef]
  19. D. Arbel and M. Orenstein, “Plasmonic modes in W-shaped metal-coated silicon grooves,” Opt. Express16(5), 3114–3119 (2008). [CrossRef] [PubMed]
  20. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005). [CrossRef] [PubMed]
  21. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express14(20), 9467–9476 (2006). [CrossRef] [PubMed]
  22. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett.29(10), 1069–1071 (2004). [CrossRef] [PubMed]
  23. R. B. Nielsen, I. Fernandez-Cuesta, A. Boltasseva, V. S. Volkov, S. I. Bozhevolnyi, A. Klukowska, and A. Kristensen, “Channel plasmon polariton propagation in nanoimprinted V-groove waveguides,” Opt. Lett.33(23), 2800–2802 (2008). [CrossRef] [PubMed]
  24. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  25. D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett.85(26), 6323–6325 (2004). [CrossRef]
  26. D. F. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett.30(10), 1186–1188 (2005). [CrossRef] [PubMed]
  27. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett.7(4), 880–884 (2007). [CrossRef] [PubMed]
  28. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17(9), 7519–7524 (2009). [CrossRef] [PubMed]
  29. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009). [CrossRef] [PubMed]
  30. S. I. Bozhevolnyi and K. V. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett.35(4), 541–543 (2010). [CrossRef] [PubMed]
  31. S. I. Bozhevolnyi and K. V. Nerkararyan, “Analytic description of channel plasmon polaritons,” Opt. Lett.34(13), 2039–2041 (2009). [CrossRef] [PubMed]
  32. V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Dispersion of strongly confined channel plasmon polariton modes,” J. Opt. Soc. Am. B28(7), 1596–1602 (2011). [CrossRef]
  33. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett.31(23), 3447–3449 (2006). [CrossRef] [PubMed]
  34. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Channel plasmon-polariton modes in V grooves filled with dielectric,” J. Appl. Phys.103(3), 034304 (2008). [CrossRef]
  35. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express16(4), 2676–2684 (2008). [CrossRef] [PubMed]
  36. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of Sub-25 Nm Vias and Trenches in Polymers,” Appl. Phys. Lett.67(21), 3114–3116 (1995). [CrossRef]
  37. L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater. (Deerfield Beach Fla.)19(4), 495–513 (2007). [CrossRef]
  38. I. Fernandez-Cuesta, R. B. Nielsen, A. Boltasseva, X. Borrise, F. Perez-Murano, and A. Kristensen, “V-groove plasmonic waveguides fabricated by nanoimprint lithography,” J. Vac. Sci. Technol. B25(6), 2649–2653 (2007). [CrossRef]
  39. Commercially available from micro resist technology GmbH, Berlin, Germany, http://www.microresist.de/home_en.htm .
  40. S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express13(12), 4674–4682 (2005). [CrossRef] [PubMed]
  41. I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B70(4), 045421 (2004). [CrossRef]
  42. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  43. A. Schleunitz and H. Schift, “Fabrication of 3D nanoimprint stamps with continuous reliefs using dose-modulated electron beam lithography and thermal reflow,” J. Micromech. Microeng.20(9), 095002 (2010). [CrossRef]
  44. I. Fernandez-Cuesta, R. B. Nielsen, A. Boltasseva, X. Borrise, F. Perez-Murano, and A. Kristensen, “Excitation of fluorescent nanoparticles by channel plasmon polaritons propagating in V-grooves,” Appl. Phys. Lett.95(20), 203102 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited