OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5725–5741

High-performance monolithically integrated 120° downconverter with relaxed hardware constraints

P. J. Reyes-Iglesias, I. Molina-Fernández, A. Moscoso-Mártir, and A. Ortega-Moñux  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5725-5741 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1646 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A coherent receiver based on a 120° downconverter architecture, inherited from previous approaches at the microwave and optical fields, is proposed, analyzed, numerically evaluated and compared to the conventional 90° downconverter alternative. It is shown that, due to its superior calibration procedure, the new downconverter architecture allows full compensation of the imbalances in its optical front-end thus leading to an extended dynamic range and a broader operating bandwidth than its 90° counterpart. Simulation results from monolithically integrated downconverters show that our approach can be an interesting alternative to support efficient modulation schemes such as M-QAM that is being studied as potential candidate for the next generation of optical communication systems.

© 2012 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 2, 2011
Revised Manuscript: January 13, 2012
Manuscript Accepted: January 16, 2012
Published: February 24, 2012

P. J. Reyes-Iglesias, I. Molina-Fernández, A. Moscoso-Mártir, and A. Ortega-Moñux, "High-performance monolithically integrated 120° downconverter with relaxed hardware constraints," Opt. Express 20, 5725-5741 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Optical Internetworking Forum (OIF), “100G ultra long haul DWDM framework document,” document OIF-FD-100G-DWDM-01.0 (June 2009), http://www.oiforum.com/public/impagreements.html .
  2. Mirthe Project, “Monolithic InP-based dual polarization QPSK integrated receiver and transmitter for coherent 100–400Gb Ethernet,” http://www.ist-mirthe.eu/ .
  3. M. Nakazawa, “Ultrafast and high-spectral-density optical communications systems,” "Ultrafast and High-spectral-density optical communications systems,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThGG3.
  4. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and extended L-band transmission over 240 km Using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPB7.
  5. F. Boubal, E. Brandon, L. Buet, S. Chernikov, V. Havard, C. Heerdt, A. Hugbart, W. Idler, L. Labrunie, P. Le Roux, S. A. E. Lewis, A. Pham, L. Piriou, R. Uhel, and J. P. Blondel, “4.16 Tbit/s (104x40 Gbit/s) unrepeatered transmission over 135 km in S + C + L bands with 104 nm total bandwidth,” in 27th European Conference on Optical Communication, 2001. ECOC '01 (2001), vol. 1, pp. 58–59
  6. A. W. Davis, M. Pettitt, J. King, and S. Wright, “Phase diversity techniques for coherent optical receivers,” J. Lightwave Technol.5(4), 561–572 (1987). [CrossRef]
  7. Y. Painchaud, M. Poulin, M. Morin, and M. Têtu, “Performance of balanced detection in a coherent receiver,” Opt. Express17(5), 3659–3672 (2009). [CrossRef] [PubMed]
  8. Optoplex Corportation, “2x4 QPSK mixer-polarization diversified optical hybrid,” datasheet, www.optoplex.com .
  9. A. Matiss, S. Bottacchi, J. K. Fischer, R. Ludwig, C. C. Leonhardt, C. Schmidt-Langhorst, and C. Schubert, “Performance of an integrated coherent receiver module for up to 160G DP-QPSK transmission systems,” J. Lightwave Technol.29(7), 1026–1032 (2011). [CrossRef]
  10. R. Kunkel, H.-G. Bach, D. Hoffmann, C. Weinert, I. Molina-Fernandez, and R. Halir, “First monolithic InP-based 90 degrees-hybrid OEIC comprising balanced detectors for 100GE coherent frontends,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2009), paper TuB2.2, pp. 167–170.
  11. I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008). [CrossRef]
  12. A. Moscoso-Martir, I. Molina-Fernandez, and A. Ortega-Monux, “Signal constellation distortion and ber degradation due to hardware impairments in six-port receivers with analog I/Q generation,” Prog. Electromagn. Res.121, 225–247 (2011). [CrossRef]
  13. J. Li, R. G. Bosisio, and K. Wu, “Computer and measurement simulation of a new digital receiver operating directly at millimeter-wave frequencies,” IEEE Trans. Microw. Theory Tech.43(12), 2766–2772 (1995). [CrossRef]
  14. P. Pérez-Lara, I. Molina-Fernandez, J. G. Wanguemert-Perez, and A. Rueda-Perez, “Broadband five-port direct receiver based on low-pass and high-pass phase shifters,” IEEE Trans. Microw. Theory Tech.58(4), 849–853 (2010). [CrossRef]
  15. T. Pfau, S. Hoffmann, O. Adamczyk, R. Peveling, V. Herath, M. Porrmann, and R. Noé, “Coherent optical communication: towards realtime systems at 40 Gbit/s and beyond,” Opt. Express16(2), 866–872 (2008). [CrossRef] [PubMed]
  16. A. B. Carlson, Communication Systems (McGraw-Hill, 1986).
  17. P. Perez-Lara, I. Molina-Fernandez, J. G. Wangüemert-Perez, and R. G. Bosisio, “Effects of hardware imperfection on six-port direct digital receivers calibrated with three and four signal standards,” IEE Proc. Microw. Antennas Propag.153(2), 171–176 (2006). [CrossRef]
  18. F. M. Ghannouchi and R. G. Bosisio, “An alternative explicit six-port matrix calibration formalism using five standards,” IEEE Trans. Microw. Theory Tech.36(3), 494–498 (1988). [CrossRef]
  19. R. Halir, G. Roelkens, A. Ortega-Moñux, and J. G. Wangüemert-Pérez, “High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler,” Opt. Lett.36(2), 178–180 (2011). [CrossRef] [PubMed]
  20. R. Halir, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, B. Lamontagne, and S. Janz, “Integrated optical six-port reflectometer in silicon-on-insulator,” J. Lightwave Technol.27(23), 5405–5409 (2009). [CrossRef]
  21. R. Halir, I. Molina-Fernandez, A. Ortega-Monux, J. G. Wanguemert-Perez, D.-X. Xu, P. Cheben, and S. Janz, “A design procedure for high-performance, rib-waveguide-based multimode interference couplers in silicon-on-insulator,” J. Lightwave Technol.26(16), 2928–2936 (2008). [CrossRef]
  22. P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994). [CrossRef]
  23. M. Seimetz, “Multi-format transmitters for coherent optical M-PSK and M-QAM transmission,” Proceedings of 2005 7th International Conference Transparent Optical Networks (2005), pp. 225–229, paper Th.B1.5

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited