OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 5840–5848

Tunable slow and fast light device based on a carbon nanotube resonator

Jin-Jin Li and Ka-Di Zhu  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 5840-5848 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1568 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a tunable slow and fast light device based on a carbon nanotube resonator, in the presence of a strong pump laser and a weak signal laser. Detailed analysis shows that the signal laser displays the superluminal and ultraslow light characteristics via passing through a suspended carbon nanotube resonator, while the incident pump laser is on- and off-resonant with the exciton frequency, respectively. In particular, the fast and slow light correspond to the negative and positive dispersion, respectively, associating with the vanished absorption. The bandwidth of the signal spectrum is determined by the vibration decay rate of carbon nanotube.

© 2012 OSA

OCIS Codes
(230.1150) Optical devices : All-optical devices
(270.0270) Quantum optics : Quantum optics

ToC Category:
Optical Devices

Original Manuscript: November 14, 2011
Revised Manuscript: December 24, 2011
Manuscript Accepted: January 20, 2012
Published: February 27, 2012

Jin-Jin Li and Ka-Di Zhu, "Tunable slow and fast light device based on a carbon nanotube resonator," Opt. Express 20, 5840-5848 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science326, 1074 (2009). [CrossRef] [PubMed]
  2. B. Gu, N. H. Kwong, R. Binder, and A. L. Smirl, “Slow and fast light associated with polariton interference,” Phys. Rev. B82, 035313 (2010). [CrossRef]
  3. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News19, 18 (2006). [CrossRef]
  4. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472, 69 (2011). [CrossRef] [PubMed]
  5. V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett.107, 133601 (2011). [CrossRef] [PubMed]
  6. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397, 594(1999). [CrossRef]
  7. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90, 113903 (2003). [CrossRef] [PubMed]
  8. V. I. Kovalev, N. E. Kotova, and R. G. Harrison, “Slow light in stimulated Brillouin scattering: on the influence of the spectral width of pump radiation on the group index: reply,” Opt. Express18, 8055 (2010). [CrossRef] [PubMed]
  9. V. P. Kalosha, L. Chen, and X. Bao, “Slow and fast light via SBS in optical fibers for short pulses and broadband pump,” Opt. Express14, 12693 (2006). [CrossRef] [PubMed]
  10. B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics4, 776 (2010). [CrossRef]
  11. S. Stepanov and M. P. Sánchez, “Slow and fast light via two-wave mixing in erbium-doped fibers with saturable absorption,” Phys. Rev. A80, 053830 (2009). [CrossRef]
  12. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50, 36 (1997). [CrossRef]
  13. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Iniversity Press, 1997).
  14. P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics2, 341 (2008). [CrossRef]
  15. M. Muoth, T. Helbling, L. Durrer, S.-W. Lee, C. Roman, and C. Hierold, “Hysteresis-free operation of suspended carbon nanotube transistors,” Nat. Nanotechnol.5, 589 (2010). [CrossRef] [PubMed]
  16. R. Singhal, Z. Orynbayeva, R. V. K. Sundaram, J. J. Niu, S. Bhattacharyya, E. A. Vitol, M. G. Schrlau, E. S. Papazoglou, G. Friedman, and Y. Gogotsi, “Multifunctional carbon-nanotube cellular endoscopes,” Nat. Nanotechnol.6, 57 (2010) [CrossRef] [PubMed]
  17. W. Belzig, “Hybrid superconducting devices: bound in a nanotube,” Nat. Phys.6, 940 (2010). [CrossRef]
  18. A. Pályi, P. R. Struck, M. Rudner, K. Flensberg, and G. Burkard, “Spin-orbit induced strong coupling of a single spin to a nanomechanical resonator,” ArXiv:1110.4893v1 (2011).
  19. C. Ohm, C. Stampfer, J. Splettstoesser, and M. R. Wegewijs, “Readout of carbon nanotube vibrations based on spin-phonon coupling,” ArXiv:1110.5165v1 (2011).
  20. H. Farhat, S. Berciaud, M. Kalbac, R. Saito, T. F. Heinz, M. S. Dresselhaus, and J. Kong, “Observation of electronic Raman scattering in metallic carbon nanotubes,” Phys. Rev. Lett.107, 157401 (2011). [CrossRef] [PubMed]
  21. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science330, 1520 (2010). [CrossRef] [PubMed]
  22. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature471, 204 (2011). [CrossRef] [PubMed]
  23. I. Wilson-Rae, C. Galland, W. Zwerger, and A. Imamoğlu, “Nano-optomechanics with localized carbon nanotube excitons,” arXiv:0911.1330 (2009).
  24. I. Wilson-Rae, “Intrinsic dissipation in nanomechanical resonators due to phonon tunneling,” Phys. Rev. B77, 245418 (2008). [CrossRef]
  25. R. W. Boyd, Nonlinear Optics (Academic Press, 2008), p. 313.
  26. J. J. Li and K. D. Zhu, “All-optical Kerr modulator based on a carbon nanotube resonator,” Phys. Rev. B83, 115445 (2011). [CrossRef]
  27. K. F. Graff, Wave Motion in Elastic Solids (Dover, 1991) pp. 539–564.
  28. C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed. (Springer, 2000) pp. 425–433.
  29. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994) pp. 245–265.
  30. K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum.76, 061101 (2005). [CrossRef]
  31. V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phys. Rev. A63, 023812 (2001). [CrossRef]
  32. S. Yasukochi, T. Murai, S. Moritsubo, T. Shimada, S. Chiashi, S. Maruyama, and Y. K. Kato, “Gate-induced blueshift and quenching of photoluminescence in suspended single-walled carbon nanotubes,” Phys. Rev. B84, 121409 (2011). [CrossRef]
  33. R. S. Bennink, R. W. Boyd, C. R. Stroud, and V. Wong, “Enhanced self-action effects by electromagnetically induced transparency in the two-level atom,” Phys. Rev. A63, 033804 (2001). [CrossRef]
  34. S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A46, R29 (1992). [CrossRef] [PubMed]
  35. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science326, 1074 (2009). [CrossRef] [PubMed]
  36. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77, 633 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited