OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 5858–5866

Terahertz refractive index sensors using dielectric pipe waveguides

Borwen You, Ja-Yu Lu, Chin-Ping Yu, Tze-An Liu, and Jin-Long Peng  »View Author Affiliations


Optics Express, Vol. 20, Issue 6, pp. 5858-5866 (2012)
http://dx.doi.org/10.1364/OE.20.005858


View Full Text Article

Acrobat PDF (1672 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A dielectric pipe waveguide is successfully demonstrated as a terahertz refractive index sensor for powder and liquid-vapor sensing. Without additional engineered structures, a simple pipe waveguide can act as a terahertz resonator based on anti-resonant reflecting guidance, forming multiple resonant transmission-dips. Loading various powders in the ring-cladding or inserting different vapors into the hollow core of the pipe waveguide leads to a significant shift of resonant frequency, and the spectral shift is related to the refractive-index change. The proven detection limit of molecular density could be reduced to 1.6nano-mole/mm3 and the highest sensitivity is demonstrated at around 22.2GHz/refractive-index-unit (RIU), which is comparable to the best THz molecular sensor [Appl. Phys. Lett. 95, 171113 (2009)].

© 2012 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(130.6010) Integrated optics : Sensors
(230.7370) Optical devices : Waveguides
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Sensors

History
Original Manuscript: November 23, 2011
Revised Manuscript: January 23, 2012
Manuscript Accepted: February 21, 2012
Published: February 27, 2012

Citation
Borwen You, Ja-Yu Lu, Chin-Ping Yu, Tze-An Liu, and Jin-Long Peng, "Terahertz refractive index sensors using dielectric pipe waveguides," Opt. Express 20, 5858-5866 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-5858


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys.39(17), R301–R310 (2006). [CrossRef]
  2. W. Withayachumnankul, B. M. Fischer, H. Lin, and D. Abbott, “Uncertainty in terahertz time-domain spectroscopy measurement,” J. Opt. Soc. Am. B25(6), 1059–1072 (2008). [CrossRef]
  3. H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett.87(24), 241119 (2005). [CrossRef]
  4. M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett.80(1), 154–156 (2002). [CrossRef]
  5. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008). [CrossRef] [PubMed]
  6. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009). [CrossRef]
  7. A. M. Zheltikov, “Ray-optic analysis of the (bio)sensing ability of ring-cladding hollow waveguides,” Appl. Opt.47(3), 474–479 (2008). [CrossRef] [PubMed]
  8. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett.34(21), 3457–3459 (2009). [CrossRef] [PubMed]
  9. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27(18), 1592–1594 (2002). [CrossRef] [PubMed]
  10. B. You, J.-Y. Lu, J.-H. Liou, C.-P. Yu, H.-Z. Chen, T.-A. Liu, and J.-L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express18(18), 19353–19360 (2010). [CrossRef] [PubMed]
  11. R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves28(5), 363–371 (2007). [CrossRef]
  12. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express18(1), 309–322 (2010). [CrossRef] [PubMed]
  13. J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Millim.17, 1996–2034 (1996).
  14. N. Kinrot, “Analysis of bulk material sensing using a periodically segmented waveguide Mach–Zehnder interferometer for biosensing,” J. Lightwave Technol.22(10), 2296–2301 (2004). [CrossRef]
  15. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express11(20), 2549–2554 (2003). [CrossRef] [PubMed]
  16. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20, S266 (2005).
  17. J. A. Dean, Lange's Handbook of Chemistry (McGraw-Hill, 1999), Chap.5.
  18. E. W. Washburn,International Critical Tables of Numerical Data, Physics, Chemistry and Technology (Knovel, 2003), Vol. IV.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited