OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 5867–5881

Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides

Shiyang Zhu, G. Q. Lo, and D. L. Kwong  »View Author Affiliations


Optics Express, Vol. 20, Issue 6, pp. 5867-5881 (2012)
http://dx.doi.org/10.1364/OE.20.005867


View Full Text Article

Enhanced HTML    Acrobat PDF (3526 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report systematic results on the development of horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguide components operating at 1550-nm telecom wavelengths, including straight waveguides, sharp 90° bends, power splitters, and Mach-Zehnder interferometers (MZIs). Owing to the relatively low loss for propagating (~0.3 dB/µm) and for 90° sharply bending (~0.73 dB/turn), various ultracompact power splitters and MZIs are experimentally realized on a silicon-on-insulator (SOI) platform using standard CMOS technology. The demonstrated splitters exhibit a relatively low excess loss and the MZIs exhibit good performance such as high extinction ratio of ~18 dB and low normalized insertion loss of ~1.7 dB. The experimental results of these devices agree well with those predicted from numerical simulations with suitable Cu permittivity data.

© 2012 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optoelectronics

History
Original Manuscript: November 28, 2011
Revised Manuscript: January 27, 2012
Manuscript Accepted: January 27, 2012
Published: February 27, 2012

Citation
Shiyang Zhu, G. Q. Lo, and D. L. Kwong, "Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides," Opt. Express 20, 5867-5881 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-5867


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron.32(1), 1–41 (2008). [CrossRef]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  3. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008). [CrossRef]
  4. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  5. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7–8), 20–27 (2006). [CrossRef]
  6. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express16(4), 2676–2684 (2008). [CrossRef] [PubMed]
  7. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  8. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric –loaded surface plasmon-polariton waveguides,” Phys. Rev. B75(24), 245405 (2007). [CrossRef]
  9. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011). [CrossRef]
  10. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011). [CrossRef] [PubMed]
  11. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express18(26), 27802–27819 (2010). [CrossRef] [PubMed]
  12. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide,” Opt. Express19(17), 15843–15854 (2011). [CrossRef] [PubMed]
  13. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett.99(3), 031112 (2011). [CrossRef]
  14. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicron radius,” IEEE Photon. Technol. Lett.23(24), 1896–1898 (2011). [CrossRef]
  15. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011). [CrossRef]
  16. J. W. Peng, S. J. Lee, G. C. A. Liang, N. Singh, S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Improved carrier injection in gate-all-around Schottky barrier silicon nanowaire field-effect transistors,” Appl. Phys. Lett.93(7), 073503 (2008). [CrossRef]
  17. http://www.rsoftinc.com
  18. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998). [CrossRef] [PubMed]
  19. S. Roberts, “Optical properties of copper,” Phys. Rev.118(6), 1509–1518 (1960). [CrossRef]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).
  21. G. S. Mathad, Copper Interconnects, New Contact Metallurgies, Structures, and Low-k Interlevel Dielectrics (The Electrochemical Society, Inc., New Jersey, USA, 2003).
  22. S. Y. Zhu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides,” Opt. Express17(23), 20891–20899 (2009). [CrossRef] [PubMed]
  23. W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. (Deerfield Beach Fla.)22(45), 5120–5124 (2010). [CrossRef] [PubMed]
  24. G. T. Reed, Silicon Photonics: The State of the Art (John Wiley &Sons, Ltd, 2008), Chap. 7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited