OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 5896–5921

Position and orientation estimation of fixed dipole emitters using an effective Hermite point spread function model

Sjoerd Stallinga and Bernd Rieger  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 5896-5921 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1965 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a method for determining the position and orientation of fixed dipole emitters based on a combination of polarimetry and spot shape detection. A key element is an effective Point Spread Function model based on Hermite functions. The model offers a good description of the shape variations with dipole orientation and polarization detection channel, and provides computational advantages over the exact vectorial description of dipole image formation. The realized localization uncertainty is comparable to the free dipole case in which spots are rotationally symmetric and can be well modeled with a Gaussian. This result holds for all dipole orientations, for all practical signal levels, and for defocus values within the depth of focus, implying that the massive localization bias for defocused emitters with tilted dipole axis found with Gaussian spot fitting is eliminated.

© 2012 OSA

OCIS Codes
(100.6640) Image processing : Superresolution
(180.2520) Microscopy : Fluorescence microscopy
(260.5430) Physical optics : Polarization
(110.1758) Imaging systems : Computational imaging

ToC Category:

Original Manuscript: December 5, 2011
Revised Manuscript: January 11, 2012
Manuscript Accepted: January 11, 2012
Published: February 27, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Sjoerd Stallinga and Bernd Rieger, "Position and orientation estimation of fixed dipole emitters using an effective Hermite point spread function model," Opt. Express 20, 5896-5921 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science313, 1643–1645 (2006). [CrossRef]
  2. K. A. Lidke, B. Rieger, T. M. Jovin, and R. Heintzmann, “Superresolution by localization of quantum dots using blinking statistics,” Opt. Express13, 7052–7062 (2005). [CrossRef] [PubMed]
  3. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3, 793–795 (2006). [CrossRef] [PubMed]
  4. J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods5, 943–945 (2008). [CrossRef] [PubMed]
  5. M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem., Int. Ed. Engl.476172–6176 (2008). [CrossRef]
  6. S. Stallinga and B. Rieger, “Accuracy of the Gaussian Point Spread Function model in 2D localization microscopy,” Opt. Express18, 24461–24476 (2010). [CrossRef] [PubMed]
  7. J. Engelhardt, J. Keller, P. Hoyer, M. Reuss, T. Staudt, and S. W. Hell, “Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy,” Nano Lett.11, 209–213 (2010). [CrossRef] [PubMed]
  8. J. Enderlein, E. Toprak, and P. R. Selvin, “Polarization effect on position accuracy of fluorophore localization,” Opt. Express14, 8111 (2006). [CrossRef] [PubMed]
  9. T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S.-R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of positions and anisotropies,” Nat. Methods5, 1027–1031, 2008. [CrossRef] [PubMed]
  10. S. R. P. Pavani, J. G. DeLuca, and R. Piestun, “Polarization sensitive, three-dimensional, single-molecule imaging of cells with a double-helix system,” Opt. Express17, 19644–19655 (2009). [CrossRef] [PubMed]
  11. M. R. Foreman, C. M. Romero, and P. Török, “Determination of the three-dimensional orientation of single molecules,” Opt. Lett.33, 1020–1022 (2008). [CrossRef] [PubMed]
  12. M. R. Foreman and P. Török, “Fundamental limits in single-molecule orientation measurements,” New J. Phys.13, 093013 (2011). [CrossRef]
  13. R. M. A. Azzam, “Division-of-amplitude Photopolarimeter (DOAP) for the Simultaneous Measurement of All Four Stokes Parameters of Light,” Opt. Acta29, 685–689 (1982). [CrossRef]
  14. A. P. Bartko and R. M. Dickson, “Imaging three-dimensional single molecule orientations,” J. Phys. Chem. B103, 11237–11241 (1999). [CrossRef]
  15. P. Dedecker, B. Muls, J. Hofkens, J. Enderlein, and J. Hotta, “Orientational effects in the excitation and de-excitation of single molecules interacting with donut-mode laser beams,” Opt. Express15, 3372–3383 (2007). [CrossRef] [PubMed]
  16. F. Aguet, A. Geissbühler, I. Märki, T. Lasser, and M. Unser, “Super-resolution orientation estimation and localization of fluorescent dipoles using 3-D steerable filters,” Opt. Express17, 6829–6848 (2009). [CrossRef] [PubMed]
  17. K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods7, 377–381 (2010). [CrossRef] [PubMed]
  18. T. Wilson, R. Juskaitis, and P. D. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun.141, 298–313 (1997). [CrossRef]
  19. P. Török, P. D. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small di-electric scatterers,” J. Mod. Opt.45, 1681–1698 (1998). [CrossRef]
  20. C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods7, 373–375 (2010). [CrossRef] [PubMed]
  21. E. Zauderer, “Complex argument Hermite-Gaussian and Laguerre-Gaussian beams,” J. Opt. Soc. Am. A3, 465–469 (1986). [CrossRef]
  22. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Numerical Recipes in Fortran 77,” 2nd ed. (Cambridge Univeristy Press, 1992).
  23. E. Toprak, H. Balci, B. H. Blehm, and P. R. Selvin, “Three-dimensional particle tracking via bifocal imaging,” Nano Lett.7, 2043–2045 (2007). [CrossRef] [PubMed]
  24. M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100nm resolution fluorescence microscopy of thick samples,” Nat. Methods5, 527–530 (2008). [CrossRef] [PubMed]
  25. L. Holtzer, T. Meckel, and T. Schmidt, “Nanometric three-dimensional tracking of individual quantum dots in cells,” Appl. Phys. Lett.90, (053902), 1–3 (2007). [CrossRef]
  26. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science319, 810–813 (2008). [CrossRef] [PubMed]
  27. S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express16, 22048–22057 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited