OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 5974–5986

A multi-core holey fiber based plasmonic sensor with large detection range and high linearity

Binbin Shuai, Li Xia, Yating Zhang, and Deming Liu  »View Author Affiliations


Optics Express, Vol. 20, Issue 6, pp. 5974-5986 (2012)
http://dx.doi.org/10.1364/OE.20.005974


View Full Text Article

Enhanced HTML    Acrobat PDF (1918 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present and numerically characterize a closed-form multi-core holey fiber based plasmonic sensor. The coupling properties of the specific modes are investigated comprehensively by the finite element method. It is found that not only phase matching but also loss matching plays a key role in the coupling process between the fundamental mode and plasmonic mode. The coupling transforms from incomplete coupling to complete coupling with increasing analyte RI. An average sensitivity of 2929.39nm/RIU in the sensing range 1.33-1.42, and 9231.27nm/RIU in 1.43-1.53 with high linearity is obtained. The dynamic sensing range is the largest among the reported holey fiber based plasmonic sensors, to the best of our knowledge.

© 2012 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(240.6680) Optics at surfaces : Surface plasmons
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Sensors

History
Original Manuscript: January 4, 2012
Revised Manuscript: February 18, 2012
Manuscript Accepted: February 18, 2012
Published: February 27, 2012

Citation
Binbin Shuai, Li Xia, Yating Zhang, and Deming Liu, "A multi-core holey fiber based plasmonic sensor with large detection range and high linearity," Opt. Express 20, 5974-5986 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-5974


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol.15(3), 209–221 (2009). [CrossRef]
  2. B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens.2009, 979761 (2009). [CrossRef]
  3. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006). [CrossRef]
  4. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express14(24), 11616–11621 (2006). [CrossRef] [PubMed]
  5. A. Hassani and M. Skorobogatiy, “Design criteria for microstructured optical fiber based surface plasmon resonance sensors,” J. Opt. Soc. Am. B24(6), 1423–1429 (2007). [CrossRef]
  6. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express16(12), 8427–8432 (2008). [CrossRef] [PubMed]
  7. X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express15(24), 16270–16278 (2007). [CrossRef] [PubMed]
  8. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008). [CrossRef]
  9. H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett.35(15), 2573–2575 (2010). [CrossRef] [PubMed]
  10. H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express19(13), 12180–12189 (2011). [CrossRef] [PubMed]
  11. X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt.12(1), 015005 (2010). [CrossRef]
  12. Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun.284(18), 4161–4166 (2011). [CrossRef]
  13. K. Mukasa, K. Imamura, Y. Tsuchida, and R. Sugizaki, “Multi-core fibers for large capacity SDM,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2011), paper OWJ1.
  14. M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett.36(2), 120–121 (2000). [CrossRef]
  15. N. N. Elkin, A. P. Napartovich, V. N. Troshchieva, and D. V. Vysotsky, “Diffraction modeling of the multicore fiber amplifier,” J. Lightwave Technol.25(10), 3072–3077 (2007). [CrossRef]
  16. J. F. Clément, D. Bacquet, A. Kudlinski, G. Bouwmans, O. Soppera, J. C. Garreau, and P. Szriftgiser, “Multicore fiber for cold-atomic cloud monitoring,” Opt. Express19(23), 22936–22941 (2011). [CrossRef] [PubMed]
  17. A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express19(4), 3799–3808 (2011). [CrossRef] [PubMed]
  18. M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008). [CrossRef]
  19. J. Zeng and D. Liang, “Application of fiber optic surface plasmon resonance sensor for measuring liquid refractive index,” J. Intell. Mater. Syst. Struct.17(8-9), 787–791 (2006). [CrossRef]
  20. Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding,” Opt. Express16(3), 1915–1922 (2008). [CrossRef] [PubMed]
  21. F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Avoided crossings in photonic crystal fibers,” Opt. Express19(14), 13578–13589 (2011). [CrossRef] [PubMed]
  22. G. Renversez, P. Boyer, and A. Sagrini, “Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling,” Opt. Express14(12), 5682–5687 (2006). [CrossRef] [PubMed]
  23. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol.27(11), 1617–1630 (2009). [CrossRef]
  24. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett.34(3), 322–324 (2009). [CrossRef] [PubMed]
  25. H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. St. J. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express19(9), 8200–8207 (2011). [CrossRef] [PubMed]
  26. B. Sun, M. Y. Chen, Y. K. Zhang, J. C. Yang, J. Q. Yao, and H. X. Cui, “Microstructured-core photonic-crystal fiber for ultra-sensitive refractive index sensing,” Opt. Express19(5), 4091–4100 (2011). [CrossRef] [PubMed]
  27. G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett.35(6), 856–858 (2010). [CrossRef] [PubMed]
  28. M. Erdmanis, D. Viegas, M. Hautakorpi, S. Novotny, J. L. Santos, and H. Ludvigsen, “Comprehensive numerical analysis of a surface-plasmon-resonance sensor based on an H-shaped optical fiber,” Opt. Express19(15), 13980–13988 (2011). [CrossRef] [PubMed]
  29. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16(2), 1020–1028 (2008). [CrossRef] [PubMed]
  30. W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett.30(22), 2988–2990 (2005). [CrossRef] [PubMed]
  31. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett.32(3), 211–213 (2007). [CrossRef] [PubMed]
  32. B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, and A. Barthélémy, “Phase-locked supermode emissions from a dual multicore fiber laser,” Appl. Phys. B105(2), 213–217 (2011). [CrossRef]
  33. B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B100(4), 859–864 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited