OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6003–6009

Large aperture asymmetric Fabry Perot modulator based on asymmetric tandem quantum well for low voltage operation

Byung Hoon Na, Gun Wu Ju, Hee Ju Choi, Yong Chul Cho, Yong Hwa Park, and Yong Tak Lee  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 6003-6009 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1929 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Large aperture image modulators used as demodulator in receiver path are an important component for the use in three dimensional (3D) image sensing. For practical applications, low voltage operation and high modulation performance are the key requirements for modulators. Here, we propose an asymmetric Fabry-Perot modulator (AFPM) with asymmetric tandem quantum wells (ATQWs) for 3D image sensing. By using ATQWs for the AFPM design, the device operated at −4.25V, and the operating voltage was significantly lower by about 23% compared to −5.5V of a conventional AFPM with 8nm thick multiple QW with a single QW thickness (SQWs), while achieving high reflectivity modulation in excess of 50%. The performance of the fabricated devices is in good agreement with theoretical calculations. The pixelated device shows a high modulation speed of 21.8 MHz over a large aperture and good uniformity. These results show that AFPM with ATQWs is a good candidate as an optical image modulator for 3D image sensing applications.

© 2012 OSA

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(230.2090) Optical devices : Electro-optical devices
(230.4110) Optical devices : Modulators
(230.4205) Optical devices : Multiple quantum well (MQW) modulators

ToC Category:
Optical Devices

Original Manuscript: January 18, 2012
Revised Manuscript: February 18, 2012
Manuscript Accepted: February 18, 2012
Published: February 27, 2012

Byung Hoon Na, Gun Wu Ju, Hee Ju Choi, Yong Chul Cho, Yong Hwa Park, and Yong Tak Lee, "Large aperture asymmetric Fabry Perot modulator based on asymmetric tandem quantum well for low voltage operation," Opt. Express 20, 6003-6009 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Liu, C. C. Lin, and J. S. Harris, “High-speed, dual-function vertical cavity multiple quantum well modulators and photodetectors for optical interconnects,” Opt. Eng.40(7), 1186–1191 (2001). [CrossRef]
  2. W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, J. H. Ray Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s-eye modulating retroreflectors,” Opt. Eng.46(10), 104001 (2007). [CrossRef]
  3. S. Junique, Q. Wang, S. Almqvist, B. Noharet, and J. Y. Andersson, “Large-area, three-state, binary amplitude and binary phase vertical-cavity multiple quantum well electroabsorption modulator,” Opt. Express15(14), 8566–8575 (2007). [CrossRef] [PubMed]
  4. Y. Yu, S. Karlsson, C. P. Liu, R. Schatz, U. Westergren, O. Kjebon, C. H. Chuang, and L. Sailing He, “Thylen, A. B. Krysa, J. S. Roberts, and A. J. Seeds, “Enhanced linear dynamic range of asymmetric Fabry–Perot modulator/detector,” IEEE Photon. Technol. Lett.18, 770–772 (2006).
  5. T. L. Worchesky, K. J. Ritter, R. Martin, and B. Lane, “Large arrays of spatial light modulators hybridized to silicon integrated circuits,” Appl. Opt.35(8), 1180–1186 (1996). [CrossRef] [PubMed]
  6. S. Junique, Q. Wang, S. Almqvist, J. Guo, H. Martijn, B. Noharet, and J. Y. Andersson, “GaAs-based multiple-quantum-well spatial light modulators fabricated by a wafer-scale process,” Appl. Opt.44(9), 1635–1641 (2005). [CrossRef] [PubMed]
  7. J. S. Ahearn, M. H. Weiler, S. B. Adams, T. P. McElwain, A. Stark, L. DePaulis, A. L. Sarafinas, T. Hongsmatip, R. J. Martin, and B. Lane, “Multiple quantum well (MQW) spatial light modulators (SLMs) for optical data processing and beam steering,” Proc. SPIE4457, 43–53 (2001). [CrossRef]
  8. U. Arad, E. Redmard, M. Shamay, A. Averboukh, S. Levit, and U. Efron, “Development of a large high performance 2-D array of GaAs/AlGaAs multiple quantum-well modulators,” IEEE Photon. Technol. Lett.15(11), 1531–1533 (2003). [CrossRef]
  9. K. K. Law, R. H. Yan, J. L. Merz, and L. A. Coldren, “Normally-off high‐contrast asymmetric Fabry-Perot reflection modulator using Wannier-Stark localization in a superlattice,” Appl. Phys. Lett.56(19), 1886–1888 (1990). [CrossRef]
  10. C. Amano, S. Matsuo, T. Kurokawa, and H. Iwamura, “20 dB contrast GaAs /AlGaAs multiple quantum-well nonresonant modulators,” IEEE Photon. Technol. Lett.4(1), 31–33 (1992). [CrossRef]
  11. Q. Wang, S. Junique, D. Agren, S. Almqvist, and B. Noharet, “Arrays of vertical-cavity electroabsorption modulators for parallel signal processing,” Opt. Express13(9), 3323–3330 (2005). [CrossRef] [PubMed]
  12. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Bandedge electro-absorption in quantum well structures: the quantum confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984). [CrossRef]
  13. J. Roels, W. Van der Tempel, D. Van Nieuwenhove, R. Grootjans, M. Kuijk, D. van Thourhout, and R. G. Baets, “Continuous time-of-flight ranging using a MEMS diffractive subwavelength period grating (de)modulator,” IEEE Photon. Technol. Lett.20(22), 1827–1829 (2008). [CrossRef]
  14. R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron.37(3), 390–397 (2001). [CrossRef]
  15. R. Schwarte, H.-G. Heinol, Z. Xu, and K. Hartmann, ““New active 3D vision system based on rf-modulation interferometry of incoherent light,” Photonics East-Intelligent Systems and Advanced Manufacturing,” Proc. SPIE2588, 126–134 (1995). [CrossRef]
  16. H. Mohseni, H. An, Z. A. Shellenbarger, M. H. Kwakernaak, and J. H. Abeles, “Enhanced electro-optic effect in GaInAsP–InP three-step quantum wells,” Appl. Phys. Lett.84(11), 1823–1825 (2004). [CrossRef]
  17. Y. Chan and K. Tada, “Field induced optical effects in coupled quantum wells,” IEEE J. Quantum Electron.27(3), 702–707 (1991). [CrossRef]
  18. H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998). [CrossRef]
  19. T. Woodward, J. Cunningham, and W. Y. Jan, “Comparison of stepped‐well and square‐well multiple‐quantum‐well optical modulators,” J. Appl. Phys.78(3), 1411–1414 (1995). [CrossRef]
  20. F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Pearson Prentice Hall, New Jersey, 2007), Chap. 22.
  21. Y. Chiu, S. Z. Zhang, V. Kaman, J. Piprek, and J. E. Bowers, “High-speed traveling-wave electro-absorption modulators,” Proc. SPIE4490, 1–10 (2001). [CrossRef]
  22. N. Susa and T. Nakahara, “Design of AlGaAs/GaAs quantum well for electroabsorption modulator,” Solid-State Electron.36(9), 1277–1287 (1993). [CrossRef]
  23. K. Bacher, B. Pezeshki, S. M. Lord, and J. S. Harris, “Molecular beam epitaxy growth of vertical cavity optical devices with in situ corrections,” Appl. Phys. Lett.61(12), 1387–1389 (1992). [CrossRef]
  24. Q. Wang, S. Junique, D. Ågren, B. Noharet, and J. Y. Andersson, “Fabry-Perot electroabsorption modulators for high-speed free-space optical communication,” IEEE Photon. Technol. Lett.16(6), 1471–1473 (2004). [CrossRef]
  25. P. G. Goetz, W. S. Rabinovich, S. C. Binari, and J. A. Mittereder, “High-performance chirped electrode design for cat’s eye retro-reflector modulators,” IEEE Photon. Technol. Lett.18(21), 2278–2280 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited