OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6052–6057

Enhanced non-volatile and updatable holography using a polymer composite system

Pengfei Wu, Sam Q. Sun, Sarfaraz Baig, and Michael R. Wang  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 6052-6057 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2316 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Updatable holography is considered as the ultimate technique for true 3D information recording and display. However, there is no practical solution to preserve the required features of both non-volatility and reversibility which conflict with each other when the reading has the same wavelength as the recording. We demonstrate a non-volatile and updatable holographic approach by exploiting new features of molecular transformations in a polymer recording system. In addition, by using a new composite recording film containing photo-reconfigurable liquid-crystal (LC) polymer, the holographic recording is enhanced due to the collective reorientation of LC molecules around the reconfigured polymer chains.

© 2012 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(090.2870) Holography : Holographic display
(210.4770) Optical data storage : Optical recording
(160.5335) Materials : Photosensitive materials

ToC Category:

Original Manuscript: February 2, 2012
Revised Manuscript: February 22, 2012
Manuscript Accepted: February 22, 2012
Published: February 28, 2012

Pengfei Wu, Sam Q. Sun, Sarfaraz Baig, and Michael R. Wang, "Enhanced non-volatile and updatable holography using a polymer composite system," Opt. Express 20, 6052-6057 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. T. Maloney and J. B. Thaxter, “Erasable ablative holographic recording,” Appl. Opt.11(12), 2993–2994 (1972). [CrossRef] [PubMed]
  2. H. C. Külich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun.64(5), 407–411 (1987). [CrossRef]
  3. J. P. Fouassier and J. F. Rabek, Lasers in Polymer Science and Technology: Applications (CRC Press, 1990).
  4. A. G. Chen and D. J. Brady, “Two‐wavelength reversible holograms in azo‐dye doped nematic liquid crystals,” Appl. Phys. Lett.62(23), 2920–2922 (1993). [CrossRef]
  5. J. F. Heanue, M. C. Bashaw, A. J. Daiber, R. Snyder, and L. Hesselink, “Digital holographic storage system incorporating thermal fixing in lithium niobate,” Opt. Lett.21(19), 1615–1617 (1996). [CrossRef] [PubMed]
  6. V. Jerez, I. de Oliveira, and J. Frejlich, “Optical recording mechanisms in undoped titanosillenite crystals,” J. Appl. Phys.109(2), 024901 (2011). [CrossRef]
  7. K. Choi, J. Kim, Y. Lim, and B. Lee, “Full parallax viewing-angle enhanced computer-generated holographic 3D display system using integral lens array,” Opt. Express13(26), 10494–10502 (2005). [CrossRef] [PubMed]
  8. S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008). [CrossRef] [PubMed]
  9. K. Iizuka, “Welcome to the wonderful world of 3D: introduction, principles and history,” Opt. Photonics News17(7), 42–51 (2006). [CrossRef]
  10. H. I. Bjelkhagen and E. Mirlis, “Color holography to produce highly realistic three-dimensional images,” Appl. Opt.47(4), A123–A133 (2008). [CrossRef] [PubMed]
  11. S. A. Benton and V. M. Bove, Jr., Holographic Imaging (Wiley, Hoboken, NJ, 2008).
  12. P. Dean, M. R. Dickinson, and D. P. West, “Depth-resolved holographic imaging through scattering media by use of a photorefractive polymer composite device in the near infrared,” Opt. Lett.30(15), 1941–1943 (2005) (References and further reading may be available for this article. To view references and further reading you must. purchase this article.). [CrossRef] [PubMed]
  13. M. Salvador, J. Prauzner, S. Köber, K. Meerholz, J. J. Turek, K. Jeong, and D. D. Nolte, “Three-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device,” Opt. Express17(14), 11834–11849 (2009). [CrossRef] [PubMed]
  14. D. Psaltis and F. Mok, “Holographic memories,” Sci. Am.273(5), 70–76 (1995). [CrossRef] [PubMed]
  15. R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature383(6600), 505–508 (1996). [CrossRef]
  16. P. Wu, Z. Liu, J. J. Yang, A. Flores, and M. R. Wang, “Wavelength-multiplexed submicron holograms for disk-compatible data storage,” Opt. Express15(26), 17798–17804 (2007). [CrossRef] [PubMed]
  17. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett.18(12), 540–542 (1971). [CrossRef]
  18. F. Träger, Handbook of Lasers and Optics (Springer; 2007) Part D, 20.7, 1234–1235.
  19. A. Adibi, K. Buse, and D. Psaltis, “System measure for persistence in holographic recording and application to singly-doped and doubly-doped lithium niobate,” Appl. Opt.40(29), 5175–5182 (2001). [CrossRef] [PubMed]
  20. D. Psaltis, K. Buse, and A. Adibi, “Non-volatile holographic storage in doubly doped lithiumniobate crystals,” Nature393(6686), 665–668 (1998). [CrossRef]
  21. T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science268(5219), 1873–1875 (1995). [CrossRef] [PubMed]
  22. A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev.102(11), 4139–4176 (2002). [CrossRef] [PubMed]
  23. P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B57(7), 3874–3880 (1998). [CrossRef]
  24. J. F. Rabek, Photochemistry and Photophysics (CRC, Boca Raton, FL, 1990), 120–141.
  25. P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett.78(9), 1189–1191 (2001). [CrossRef]
  26. P. Wu, S. Q. Sun, S. Baig, and M. R. Wang, “Nanoscale optical reinforcement for enhanced reversible holography,” Opt. Express20(3), 3091–3097 (2012). [CrossRef] [PubMed]
  27. Y. H. Cho and Y. Kawakami, “A novel process for holographic polymer dispersed liquid crystal system via simultaneous photo-polymerization and siloxane network formation,” Silicon Chem.3(5), 219–227 (2007). [CrossRef]
  28. J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays25(5), 177–186 (2004). [CrossRef]
  29. E. H. Kim, J. Y. Woo, and B. K. Kim, “LC dependent electro-optical properties of holographic polymer dispersed liquid crystals,” Displays29(5), 482–486 (2008). [CrossRef]
  30. Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys.95(3), 810–815 (2004). [CrossRef]
  31. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci.30(1), 83–115 (2000). [CrossRef]
  32. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2947 (1969).
  33. S. Xu, H. Ren, Y. J. Lin, M. G. J. Moharam, S. T. Wu, and N. Tabiryan, “Adaptive liquid lens actuated by photo-polymer,” Opt. Express17(20), 17590–17595 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited