OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6097–6108

CMOS image sensor integrated with micro-LED and multielectrode arrays for the patterned photostimulation and multichannel recording of neuronal tissue

Arata Nakajima, Hiroshi Kimura, Yosmongkol Sawadsaringkarn, Yasuyo Maezawa, Takuma Kobayashi, Toshihiko Noda, Kiyotaka Sasagawa, Takashi Tokuda, Yasuyuki Ishikawa, Sadao Shiosaka, and Jun Ohta  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 6097-6108 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3443 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed a complementary metal oxide semiconductor (CMOS) integrated device for optogenetic applications. This device can interface via neuronal tissue with three functional modalities: imaging, optical stimulation and electrical recording. The CMOS image sensor was fabricated on 0.35 μm standard CMOS process with built-in control circuits for an on-chip blue light-emitting diode (LED) array. The effective imaging area was 2.0 × 1.8 mm2. The pixel array was composed of 7.5 × 7.5 μm2 3-transistor active pixel sensors (APSs). The LED array had 10 × 8 micro-LEDs measuring 192 × 225 μm2. We integrated the device with a commercial multichannel recording system to make electrical recordings.

© 2012 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 3, 2012
Revised Manuscript: February 7, 2012
Manuscript Accepted: February 9, 2012
Published: February 29, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Arata Nakajima, Hiroshi Kimura, Yosmongkol Sawadsaringkarn, Yasuyo Maezawa, Takuma Kobayashi, Toshihiko Noda, Kiyotaka Sasagawa, Takashi Tokuda, Yasuyuki Ishikawa, Sadao Shiosaka, and Jun Ohta, "CMOS image sensor integrated with micro-LED and multielectrode arrays for the patterned photostimulation and multichannel recording of neuronal tissue," Opt. Express 20, 6097-6108 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. W. Pruessner, T. H. Stievater, M. S. Ferraro, W. S. Rabinovich, J. L. Stepnowski, and R. A. McGill, “Waveguide micro-opto-electro-mechanical resonant chemical sensors,” Lab Chip10(6), 762–768 (2010). [CrossRef] [PubMed]
  2. A. Hierlemann and H. Baltes, “CMOS-based chemical microsensors,” Analyst (Lond.)128(1), 15–28 (2003). [CrossRef] [PubMed]
  3. C. J. Lu, W. H. Steinecker, W. C. Tian, M. C. Oborny, J. M. Nichols, M. Agah, J. A. Potkay, H. K. Chan, J. Driscoll, R. D. Sacks, K. D. Wise, S. W. Pang, and E. T. Zellers, “First-generation hybrid MEMS gas chromatograph,” Lab Chip5(10), 1123–1131 (2005). [CrossRef] [PubMed]
  4. T. Tokuda, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS image sensor with monolithically embedded polarizer for microchemistry systems,” IEEE Trans. Biomed. Circuits Syst.3(5), 259–266 (2009). [CrossRef]
  5. P. C. Chen, Y. Y. Huang, and J. L. Juang, “MEMS microwell and microcolumn arrays: novel methods for high-throughput cell-based assays,” Lab Chip11(21), 3619–3625 (2011). [CrossRef] [PubMed]
  6. G. Baaken, M. Sondermann, C. Schlemmer, J. Rühe, and J. C. Behrends, “Planar microelectrode-cavity array for high-resolution and parallel electrical recording of membrane ionic currents,” Lab Chip8(6), 938–944 (2008). [CrossRef] [PubMed]
  7. T. Tokuda, I. Kadowaki, K. Kagawa, M. Nunoshita, and J. Ohta, “A new scheme for imaging on-chip dry DNA spots using optical/potential dual-image complementary metal oxide semiconductor sensor,” Jpn. J. Appl. Phys.46(4B), 2806–2810 (2007). [CrossRef]
  8. B. Eversmann, M. Jenkner, F. Hofmann, C. Paulus, R. Brederlow, B. Holzapfl, P. Fromherz, M. Merz, M. Brenner, M. Schreiter, R. Gabl, K. Plehnert, M. Steinhauser, G. Eckstein, D. Schmitt-Landsiedel, and R. Thewes, “A 128 x 128 CMOS biosensor array for extracellular recording of neural activity,” IEEE J. Solid-state Circuits38(12), 2306–2317 (2003). [CrossRef]
  9. P. Weerakoon, E. Culurciello, Y. Yang, J. Santos-Sacchi, P. J. Kindlmann, and F. J. Sigworth, “Patch-clamp amplifiers on a chip,” J. Neurosci. Methods192(2), 187–192 (2010). [CrossRef] [PubMed]
  10. K. Imfeld, S. Neukom, A. Maccione, Y. Bornat, S. Martinoia, P. A. Farine, M. Koudelka-Hep, and L. Berdondini, “Large-scale, high-resolution data acquisition system for extracellular recording of electrophysiological activity,” IEEE Trans. Biomed. Eng.55(8), 2064–2073 (2008). [CrossRef] [PubMed]
  11. R. J. Vetter, J. C. Williams, J. F. Hetke, E. A. Nunamaker, and D. R. Kipke, “Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex,” IEEE Trans. Biomed. Eng.51(6), 896–904 (2004). [CrossRef] [PubMed]
  12. C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “In vivo two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7319–7324 (2003). [CrossRef] [PubMed]
  13. I. Ferezou, S. Bolea, and C. C. H. Petersen, “Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice,” Neuron50(4), 617–629 (2006). [CrossRef] [PubMed]
  14. R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A.87(16), 6082–6086 (1990). [CrossRef] [PubMed]
  15. K. C. Reinert, R. L. Dunbar, W. Gao, G. Chen, and T. J. Ebner, “Flavoprotein autofluorescence imaging of neuronal activation in the cerebellar cortex in vivo,” J. Neurophysiol.92(1), 199–211 (2004). [CrossRef] [PubMed]
  16. B. R. Arenkiel, J. Peca, I. G. Davison, C. Feliciano, K. Deisseroth, G. J. Augustine, M. D. Ehlers, and G. Feng, “In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2,” Neuron54(2), 205–218 (2007). [CrossRef] [PubMed]
  17. V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth, “Optical deconstruction of parkinsonian neural circuitry,” Science324(5925), 354–359 (2009). [CrossRef] [PubMed]
  18. A. L. Lentine, K. W. Goossen, J. A. Walker, L. M. F. Chirovsky, L. A. D’Asaro, S. P. Hui, B. J. Tseng, R. E. Leibenguth, J. E. Cunningham, W. Y. Jan, J. Kuo, D. W. Dahringer, D. P. Kossives, D. D. Bacon, G. Livescu, R. L. Morrison, R. A. Novotny, and D. B. Buchholz, “High-speed optoelectronic VLSI switching chip with >4000 optical I/O based on flip-chip bonding of MQW modulators and detectors to silicon CMOS,” IEEE J. Sel. Top. Quantum Electron.2(1), 77–84 (1996). [CrossRef]
  19. X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A.105(31), 10670–10675 (2008). [CrossRef] [PubMed]
  20. J. Honghao, P. A. Abshire, M. Urdaneta, and E. Smela, “CMOS contact imager for monitoring cultured cells,” in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS)4, 3491–3494 (2005).
  21. N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. B. Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng.7(1), 016004 (2010). [CrossRef] [PubMed]
  22. M. Im, I. Cho, F. Wu, K. D. Wise, and E. Yoon, “Neural probes integrated with optical mixer/splitter waveguides and multiple stimulation sites,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (Cancun, Mexico, 2011), pp. 1051–1054.
  23. R. Kobayashi, S. Kanno, S. Sasaki, S. Lee, M. Koyanagi, H. Yao, and T. Tanaka, “Development of Si neural probe with optical waveguide for highly accurate optical stimulation of neuron,” in Proceedings of IEEE International EMBS Conference on Neural Engineering (Cancun, Mexico, 2011), pp. 294–297.
  24. J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. Van Wagenen, Y. K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6(5), 055007 (2009). [CrossRef] [PubMed]
  25. F. Normandin, M. Sawan, and J. Faubert, “A new integrated front-end for a noninvasive brain imaging system based on near-infrared spectroreflectometry,” IEEE Trans. Circuits. Syst., l. Regul. Pap.52(12), 2663–2671 (2005). [CrossRef]
  26. J. H. Park, V. Pieribone, K. Dongsoo, J. V. Verhagen, C. von Hehn, and E. Culurciello, “High-speed fluorescence imaging system for freely moving animals,” in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS) (Taipei, Taiwan, 2009), pp. 2429–2432.
  27. D. C. Ng, H. Tamura, T. Mizuno, T. Tokuda, M. Nunoshita, Y. Ishikawa, S. Shiosaka, and J. Ohta, “An implantable and fully integrated complementary metal-oxide semiconductor device for in vivo neural imaging and electrical interfacing with the mouse hippocampus,” Sens. Actuators A Phys.145–146, 176–186 (2008). [CrossRef]
  28. H. Tamura, D. C. Ng, T. Tokuda, H. Naoki, T. Nakagawa, T. Mizuno, Y. Hatanaka, Y. Ishikawa, J. Ohta, and S. Shiosaka, “One-chip sensing device (biomedical photonic LSI) enabled to assess hippocampal steep and gradual up-regulated proteolytic activities,” J. Neurosci. Methods173(1), 114–120 (2008). [CrossRef] [PubMed]
  29. T. Kobayashi, A. Tagawa, T. Noda, K. Sasagawa, T. Tokuda, Y. Hatanaka, H. Tamura, Y. Ishikawa, S. Shiosaka, and J. Ohta, “Potentiometric dye imaging for pheochromocytoma and cortical neurons with a novel measurement system using and integrated complementary metal-oxide-semiconductor imaging device,” Jpn. J. Appl. Phys.49(11), 117001 (2010). [CrossRef]
  30. T. Kobayashi, H. Tamura, Y. Hatanaka, M. Motoyama, T. Noda, K. Sasagawa, T. Tokuda, Y. Ishikawa, S. Shiosaka, and J. Ohta, “Functional neuroimaging by using an implantable CMOS multimodal device in a freely-moving mouse” in Proceedings of IEEE Biomedical Circuits and Systems Conference (BioCAS) (San Diego, USA, 2011), pp. 110–113.
  31. S. Shishido, Y. Oguro, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “CMOS image sensor for recording of intrinsic-optical-signal of the brain,” in Proceedings of IEEE International SoC Design Conference (ISOCC) (Busan, Korea, 2009), pp. 190–193.
  32. C. Shi, M. K. Law, and A. Bermak, “A novel asynchronous pixel for an energy harvesting CMOS image sensor,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.19(1), 118–129 (2011). [CrossRef]
  33. A. Tagawa, H. Minami, M. Mitani, T. Noda, K. Sasagawa, T. Tokuda, H. Tamura, Y. Hatanaka, Y. Ishikawa, S. Shiosaka, and J. Ohta, “Multimodal complementary metal-oxide-semiconductor sensor device for imaging of fluorescence and electrical potential in deep brain of mouse,” Jpn. J. Appl. Phys.49(1), 01AG02 (2010). [CrossRef]
  34. A. Nakajima, T. Noda, K. Sasagawa, T. Tokuda, Y. Ishikawa, S. Shiosaka, and J. Ohta, “Planar multielectrode array coupled complementary metal oxide semiconductor image sensor for in vitro electophysiology,” Jpn. J. Appl. Phys.50(4), 04DL04 (2011). [CrossRef]
  35. M. O. Heuschkel, M. Fejtl, M. Raggenbass, D. Bertrand, and P. Renaud, “A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices,” J. Neurosci. Methods114(2), 135–148 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited