OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6116–6123

Terahertz band gaps induced by metal grooves inside parallel-plate waveguides

Eui Su Lee, Jin-Kyu So, Gun-Sik Park, DaiSik Kim, Chul-Sik Kee, and Tae-In Jeon  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 6116-6123 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2576 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report experimental and finite-difference time-domain simulation studies on terahertz (THz) characteristics of band gaps by using metal grooves which are located inside the flare parallel-plate waveguide. The vertically localized standing-wave cavity mode (SWCM) between the upper waveguide surface and groove bottom, and the horizontally localized SWCM between two groove side walls (groove cavity) are observed. The E field intensity of the horizontally localized SWCM in grooves is very strongly enchanced which is three order higher than that of the input THz. The 4 band gaps except the Bragg band gap are caused by the π radian delay (out of phase) between the reflected THz field by grooves and the propagated THz field through the air gap. The measurement and simulation results agree well.

© 2012 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.1480) Optical devices : Bragg reflectors
(230.7370) Optical devices : Waveguides
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: January 10, 2012
Revised Manuscript: February 24, 2012
Manuscript Accepted: February 27, 2012
Published: February 29, 2012

Eui Su Lee, Jin-Kyu So, Gun-Sik Park, DaiSik Kim, Chul-Sik Kee, and Tae-In Jeon, "Terahertz band gaps induced by metal grooves inside parallel-plate waveguides," Opt. Express 20, 6116-6123 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Sommerfeld, “Ueber die fortpflanzung elektrodynamischer wellen längs eines drahtes,” Ann. Phys. Chem.303(2), 233–290 (1899). [CrossRef]
  2. J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Annalen der Physik328(10), 846–866 (1907). [CrossRef]
  3. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys.216(4), 398–410 (1968). [CrossRef]
  4. D. F. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech.47(11), 2059–2074 (1999). [CrossRef]
  5. F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, “A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure,” IEEE Trans. Microw. Theory Tech.47(11), 2092–2098 (1999). [CrossRef]
  6. T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005). [CrossRef]
  7. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004). [CrossRef] [PubMed]
  8. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett.88(6), 061113 (2006). [CrossRef]
  9. M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express17(19), 17088–17101 (2009). [CrossRef] [PubMed]
  10. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004). [CrossRef] [PubMed]
  11. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005). [CrossRef] [PubMed]
  12. K. Ogusu and K. Takayama, “Transmission characteristics of photonic crystal waveguides with stubs and their application to optical filters,” Opt. Lett.32(15), 2185–2187 (2007). [CrossRef] [PubMed]
  13. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett.33(23), 2874–2876 (2008). [CrossRef] [PubMed]
  14. J. Tao, X. G. Huang, X. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express17(16), 13989–13994 (2009). [CrossRef] [PubMed]
  15. M. Kuttge, F. J. García de Abajo, and A. Polman, “How grooves reflect and confine surfaceplasmon polaritons,” Opt. Express17(12), 10385–10392 (2009). [CrossRef] [PubMed]
  16. J. Tao, X. Huang, X. Lin, J. Chen, Q. Zhang, and X. Jin, “Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters,” J. Opt. Soc. Am. B27(2), 323–327 (2010). [CrossRef]
  17. Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express19(4), 3251–3257 (2011). [CrossRef] [PubMed]
  18. A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett.87(5), 051101 (2005). [CrossRef]
  19. A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett.90(9), 091105 (2007). [CrossRef]
  20. S. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett.94(9), 091118 (2009). [CrossRef]
  21. E. S. Lee, D. H. Kang, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, D. S. Kim, and T.-I. Jeon, “Bragg reflection of terahertz waves in plasmonic crystals,” Opt. Express17(11), 9212–9218 (2009). [CrossRef] [PubMed]
  22. E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett.97(18), 181112 (2010). [CrossRef]
  23. V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett.36(8), 1452–1454 (2011). [CrossRef] [PubMed]
  24. J. Renger, “Excitation, interaction, and scattering of localized and propagating surface polaritons,” Ph.D. Thesis., Technical University, Dresden, 63–84 (2006).
  25. Z. P. Jian, J. Pearce, and D. M. Mittleman, “Two-dimensional photonic crystal slabs in parallel-plate metal waveguides studied with terahertz time-domain spectroscopy,” Semicond. Sci. Technol.20(7), S300–S306 (2005). [CrossRef]
  26. C. Yee and M. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett.94(15), 154104 (2009). [CrossRef]
  27. R. Mendis and D. Grischkowsky, ““THz interconnect with low loss and low group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett.11(11), 444–446 (2001). [CrossRef]
  28. Y. Zhao and D. Grischkowsky, “Terahertz demonstrations of effectively two-dimensional photonic bandgap structures,” Opt. Lett.31(10), 1534–1536 (2006). [CrossRef] [PubMed]
  29. E. S. Lee, S.-G. Lee, C.-S. Kee, and T.-I. Jeon, “Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides,” Opt. Express19(16), 14852–14859 (2011). [CrossRef] [PubMed]
  30. S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express18(2), 1289–1295 (2010). [CrossRef] [PubMed]
  31. S.-G. Lee, C.-S. Kee, E. S. Lee, and T.-I. Jeon, “Photonic band anti-crossing in a coupled system of a terahertz plasmonic crystal film and a metal air-gap waveguide,” J. Appl. Phys.110(3), 033102 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited