OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6124–6134

Directional coupling in channel plasmon-polariton waveguides

Vladimir A. Zenin, Valentyn S. Volkov, Zhanghua Han, Sergey I. Bozhevolnyi, Eloïse Devaux, and Thomas W. Ebbesen  »View Author Affiliations


Optics Express, Vol. 20, Issue 6, pp. 6124-6134 (2012)
http://dx.doi.org/10.1364/OE.20.006124


View Full Text Article

Enhanced HTML    Acrobat PDF (1893 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate directional couplers (DCs) formed by channel plasmon-polariton (CPP) waveguides (CPPWs). DCs comprising 5-µm-offset S-bends and 40-µm-long parallel CPPWs with different separations (0.08, 0.25, 0.5 and 2 µm) between V-groove channels are fabricated by using a focused ion-beam (FIB) technique in a 2-μm-thick gold film and characterized at telecom wavelengths (1425-1630 nm) with near-field optical microscopy. Experimental results reveal strong coupling, resulting in approximately equal power splitting between DC-CPPWs, for small CPPW separations (0.08 and 0.25 µm). The coupling gradually deteriorates with the increase of separation between V-grooves and practically vanishes for the separation of 2 µm. The DC-CPPW characteristics observed are found in good agreement with finite-element method (implemented in COMSOL) simulations.

© 2012 OSA

OCIS Codes
(230.7380) Optical devices : Waveguides, channeled
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 31, 2012
Revised Manuscript: February 24, 2012
Manuscript Accepted: February 24, 2012
Published: February 29, 2012

Citation
Vladimir A. Zenin, Valentyn S. Volkov, Zhanghua Han, Sergey I. Bozhevolnyi, Eloïse Devaux, and Thomas W. Ebbesen, "Directional coupling in channel plasmon-polariton waveguides," Opt. Express 20, 6124-6134 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6124


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. M. Agranovich and D. L. Mills, eds., Surface Polaritons (North-Holland, 1982).
  2. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  3. N. E. Glass, A. A. Maradudin, and V. Celli, “Theory of surface-polariton resonances and field enhancements in light scattering from bigratings,” J. Opt. Soc. Am.73(10), 1240–1248 (1983). [CrossRef]
  4. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70(1), 1–87 (2007). [CrossRef]
  5. S. I. Bozhevolnyi and F. Pudonin, “Two-dimensional micro-optics of surface plasmons,” Phys. Rev. Lett.78(14), 2823–2826 (1997). [CrossRef]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  7. J. K. Lim, K. Imura, T. Nagahara, S. K. Kim, and H. Okamoto, “Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy,” Chem. Phys. Lett.412(1-3), 41–45 (2005). [CrossRef]
  8. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008). [CrossRef]
  9. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  10. J. A. Conway, S. Sahni, and T. Szkopek, “Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs,” Opt. Express15(8), 4474–4484 (2007). [CrossRef] [PubMed]
  11. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005). [CrossRef] [PubMed]
  12. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62(24), 16356–16359 (2000). [CrossRef]
  13. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B65(19), 193408 (2002). [CrossRef]
  14. J. R. Krenn and J. C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. A Math. Phys. Eng. Sci.362(1817), 739–756 (2004). [CrossRef] [PubMed]
  15. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol.23(1), 413–422 (2005). [CrossRef]
  16. J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and A. Dereux, “Fiber-coupled dielectric-loaded plasmonic waveguides,” Opt. Express18(5), 5314–5319 (2010). [CrossRef] [PubMed]
  17. K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express13(1), 256–266 (2005). [CrossRef] [PubMed]
  18. I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B66(3), 035403 (2002). [CrossRef]
  19. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005). [CrossRef] [PubMed]
  20. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett.89(14), 143108 (2006). [CrossRef]
  21. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009). [CrossRef] [PubMed]
  22. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  23. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett.7(4), 880–884 (2007). [CrossRef] [PubMed]
  24. V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Dispersion of strongly confined channel plasmon polariton modes,” J. Opt. Soc. Am. B28(7), 1596–1602 (2011). [CrossRef]
  25. D. Arbel and M. Orenstein, “Plasmonic modes in W-shaped metal-coated silicon grooves,” Opt. Express16(5), 3114–3119 (2008). [CrossRef] [PubMed]
  26. Y. Li and X. Zhang, “Directional couplers using V-groove plasma waveguides,” in IEEE Symposium on Photonics and Optoelectronics (Institute of Electrical and Electronics Engineers, New York, 2009), 1–3.
  27. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008). [CrossRef]
  28. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Compact gradual bends for channel plasmon polaritons,” Opt. Express14(10), 4494–4503 (2006). [CrossRef] [PubMed]
  29. E. Palik and G. Ghosh, Handbook of Optical Constants of Solids II (Academic Press, 1991).
  30. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett.31(23), 3447–3449 (2006). [CrossRef] [PubMed]
  31. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express16(4), 2676–2684 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited