OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6185–6190

Extreme ultraviolet light source based on intracavity high harmonic generation in a mode locked Ti:sapphire oscillator with 9.4 MHz repetition rate

Enikoe Seres, Jozsef Seres, and Christian Spielmann  »View Author Affiliations


Optics Express, Vol. 20, Issue 6, pp. 6185-6190 (2012)
http://dx.doi.org/10.1364/OE.20.006185


View Full Text Article

Enhanced HTML    Acrobat PDF (952 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the realization of an intracavity high harmonic source with a cutoff above 30 eV. The EUV source is based on a high power, hard-aperture, Kerr-lens mode-locked Ti:sapphire oscillator with a repetition rate of 9.4 MHz. The laser is operated in the net negative dispersion regime resulting in intracavity pulses as short as 17 fs with 1 µJ pulse energy. In a second intracavity focus, intensity more than 1014 W/cm2 has been achieved, which is sufficient for high harmonic generation in a Xenon gas jet.

© 2012 OSA

OCIS Codes
(140.3590) Lasers and laser optics : Lasers, titanium
(190.4160) Nonlinear optics : Multiharmonic generation
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(340.7480) X-ray optics : X-rays, soft x-rays, extreme ultraviolet (EUV)

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 3, 2012
Revised Manuscript: February 28, 2012
Manuscript Accepted: February 29, 2012
Published: March 1, 2012

Citation
Enikoe Seres, Jozsef Seres, and Christian Spielmann, "Extreme ultraviolet light source based on intracavity high harmonic generation in a mode locked Ti:sapphire oscillator with 9.4 MHz repetition rate," Opt. Express 20, 6185-6190 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6185


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature433(7026), 596–596 (2005). [CrossRef] [PubMed]
  2. E. Seres, J. Seres, and Ch. Spielmann, “X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation,” Appl. Phys. Lett.89(18), 181919 (2006). [CrossRef]
  3. E. Seres and C. Spielmann, “Ultrafast soft x-ray absorption spectroscopy with sub-20-fs resolution,” Appl. Phys. Lett.91(12), 121919 (2007). [CrossRef]
  4. E. Seres and C. Spielmann, “Time-resolved optical pump x-ray absorption probe spectroscopy in the range up to 1 keV with 20 fs resolution,” J. Mod. Opt.55(16), 2643–2651 (2008). [CrossRef]
  5. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature436(7048), 234–237 (2005). [CrossRef] [PubMed]
  6. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett.94(19), 193201 (2005). [CrossRef] [PubMed]
  7. A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett.100(25), 253901 (2008). [CrossRef] [PubMed]
  8. D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys.5(11), 815–820 (2009). [CrossRef]
  9. J. Lee, D. R. Carlson, and R. J. Jones, “Optimizing intracavity high harmonic generation for XUV fs frequency combs,” Opt. Express19(23), 23315–23326 (2011). [CrossRef] [PubMed]
  10. T. J. Hammond, A. K. Mills, and D. J. Jones, “Near-threshold harmonics from a femtosecond enhancement cavity-based EUV source: effects of multiple quantum pathways on spatial profile and yield,” Opt. Express19(25), 24871–24883 (2011). [CrossRef] [PubMed]
  11. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008). [CrossRef] [PubMed]
  12. I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics5(11), 677–681 (2011). [CrossRef]
  13. D. Herriott, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt.3(4), 523–526 (1964). [CrossRef]
  14. A. Fuerbach, G. A. Fernandez, A. Apolonski, E. Seres, T. Fuji, and F. Krausz, “Generation of sub-30-fs pulses from a scaleable high-energy oscillator,” Proc. SPIE5340, 4–11 (2004). [CrossRef]
  15. E. Seres and Ch. Spielmann, “Development of an intracavity EUV Source based on a high power Ti:sapphire oscillator,” Proc. SPIE7721, 77210I, 77210I-7 (2010). [CrossRef]
  16. T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B77(1), 125–128 (2003). [CrossRef]
  17. A. Agnesi, E. Piccinini, and G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr 4f:forsterite lasers,” Opt. Commun.135(1-3), 77–82 (1997). [CrossRef]
  18. J. Herrmann, “Theory of Kerr-lens mode locking: role of self-focusing and radially varying gain,” J. Opt. Soc. Am. B11(3), 498–512 (1994). [CrossRef]
  19. http://henke.lbl.gov/optical_constants/ .
  20. G. W. Fraser, M. A. Barstow, J. F. Pearson, M. J. Whiteley, and M. Lewis, “The soft x-ray detection efficiency of coated microchannel plates,” Nucl. Instrum. Methods Phys. Res.224(1-2), 272–286 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited