OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6191–6196

Wavelength and bandwidth tunable photonic stopband of ferroelectric liquid crystals

Ryotaro Ozaki and Hiroshi Moritake  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 6191-6196 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1908 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The chiral smectic C phase of ferroelectric liquid crystals (FLCs) has a self-assembling helical structure which is regarded as a one-dimensional pseudo-photonic crystal. It is well known that a stopband of a FLC can be tuned in wavelength domain by changing temperature or electric field. We here have demonstrated an FLC stopband with independently tunable wavelength and bandwidth by controlling temperature and incident angle. At highly oblique incidence, the stopband does not have polarization dependence. Furthermore, the bandwidth at highly oblique incidence is much wider than that at normal incidence. The mechanism of the tunable stopband is clarified by considering the reflection at oblique incidence.

© 2012 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optical Devices

Original Manuscript: February 3, 2012
Revised Manuscript: February 25, 2012
Manuscript Accepted: February 26, 2012
Published: March 1, 2012

Ryotaro Ozaki and Hiroshi Moritake, "Wavelength and bandwidth tunable photonic stopband of ferroelectric liquid crystals," Opt. Express 20, 6191-6196 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett.23(21), 1707–1709 (1998). [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  3. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  4. H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. (Deerfield Beach Fla.)13(14), 1069–1072 (2001). [CrossRef]
  5. M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. (Deerfield Beach Fla.)14(4), 306–309 (2002). [CrossRef]
  6. M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-tunable liquid-crystal laser,” Adv. Mater. (Deerfield Beach Fla.)15(12), 974–977 (2003). [CrossRef]
  7. F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys.94(1), 279 (2003). [CrossRef]
  8. J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater.4(5), 383–387 (2005). [CrossRef] [PubMed]
  9. Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett.88(1), 011107 (2006). [CrossRef]
  10. M. Ozaki, R. Ozaki, T. Matsui, and K. Yoshino, “Twist defect mode lasing in photopolymerized cholesteric liquid crystal,” Jpn. J. Appl. Phys.42(Part 2, No. 5A), L472–L475 (2003). [CrossRef]
  11. J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett.90(8), 083902 (2003). [CrossRef] [PubMed]
  12. Y. Matsuhisa, R. Ozaki, M. Ozaki, and K. Yoshino, “Single-mode lasing in one-dimensional periodic structure containing helical structure as a defect,” Jpn. J. Appl. Phys.44(20), L629–L632 (2005). [CrossRef]
  13. N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater.7(1), 43–47 (2008). [CrossRef] [PubMed]
  14. M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics3(10), 595–600 (2009). [CrossRef]
  15. Y. Takanishi, Y. Ohtsuka, G. Suzaki, S. Nishimura, and H. Takezoe, “Low threshold lasing from dye-doped cholesteric liquid crystal multi-layered structures,” Opt. Express18(12), 12909–12914 (2010). [CrossRef] [PubMed]
  16. R. Ozaki, N. Uno, and H. Moritake, “Quasi-two-dimensional optical confinement in a cholesteric liquid crystal infiltrated optical fiber,” Jpn. J. Appl. Phys.50, 111601 (2011). [CrossRef]
  17. Y. Matsuhisa, W. Haase, A. Fujii, and M. Ozaki, “Lowering lasing threshold in ferroelectric liquid crystal sandwiched between dielectric multilayers,” Appl. Phys. Lett.89(20), 201112 (2006). [CrossRef]
  18. W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater.1(2), 111–113 (2002). [CrossRef] [PubMed]
  19. S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, and T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mater. (Deerfield Beach Fla.)18(1), 48–51 (2006). [CrossRef]
  20. R. Ozaki, T. Shinpo, and H. Moritake, “Improvement of orientation of planar cholesteric liquid crystal by rapid thermal processing,” Appl. Phys. Lett.92(16), 163304 (2008). [CrossRef]
  21. H. Takezoe, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, “Experimental studies on reflection spectra in monodomain cholesteric liquid crystal cells: total reflection, subsidiary oscillation and its beat or swell structure,” Jpn. J. Appl. Phys.22(Part 1, No. 7), 1080–1091 (1983). [CrossRef]
  22. R. Dreher, G. Meier, and A. Saupe, “Slective reflection by cholesteric liquid crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)13(1), 17–26 (1971). [CrossRef]
  23. D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from shingle-domain cholesteric liquid crystal films,” Phys. Rev. Lett.25(9), 577–581 (1970). [CrossRef]
  24. D. W. Berreman, “Twisted smectic C phase: unique optical properties,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)22(1-2), 175–184 (1973). [CrossRef]
  25. K. Hori, “Angular dependence of selective reflection from the chiral smectic C phase,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)82, 13–17 (1982). [CrossRef]
  26. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am.62(4), 502–510 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited