OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6230–6235

Experimental demonstration of novel source-free ONUs in bidirectional RF up-converted optical OFDM-PON utilizing polarization multiplexing

Chongfu Zhang, Chen Chen, Yuan Feng, and Kun Qiu  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 6230-6235 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and experimentally demonstrate a novel cost-effective optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system, wherein all optical network units (ONUs) are source-free not only in the optical domain but also in the electric domain, by utilizing polarization multiplexing (PolMUX) in the downlink transmission. Two pure optical bands with a frequency interval of 10 GHz and downlink up-converted 10 GHz OFDM signal are carried in two orthogonal states of polarization (SOPs), respectively. 10 GHz radio frequency (RF) source can be generated by a heterodyne of two pure optical bands after polarization beam splitting in each ONU, therefore it can be used to down-convert the downlink OFDM signal and up-convert the uplink OFDM signal. In the whole bidirectional up-converted OFDM-PON system, only one single RF source is employed in the optical line terminal (OLT). Experimental results successfully verify the feasibility of our proposed cost-effective optical OFDM-PON system.

© 2012 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4230) Fiber optics and optical communications : Multiplexing
(200.4740) Optics in computing : Optical processing

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 5, 2012
Revised Manuscript: February 17, 2012
Manuscript Accepted: February 28, 2012
Published: March 2, 2012

Chongfu Zhang, Chen Chen, Yuan Feng, and Kun Qiu, "Experimental demonstration of novel source-free ONUs in bidirectional RF up-converted optical OFDM-PON utilizing polarization multiplexing," Opt. Express 20, 6230-6235 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Commun.28(6), 781–790 (2010). [CrossRef]
  2. C. Zhang, J. Huang, C. Chen, and K. Qiu, “All-optical virtual private network and ONUs communication in optical OFDM-based PON system,” Opt. Express19(24), 24816–24821 (2011). [CrossRef] [PubMed]
  3. C. Zhang, C. Chen, J. Huang, and K. Qiu, “Performance improvement of optical OFDMA-based PON using data clipping and additional phases,” IEEE Photon. Technol. Lett.24(4), 255–257 (2012). [CrossRef]
  4. B. Schmidt, A. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol.26(1), 196–203 (2008). [CrossRef]
  5. C. Chow, C. Yeh, C. Wang, F. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett.21(11), 715–717 (2009). [CrossRef]
  6. J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Opt. Express18(10), 9791–9808 (2010). [CrossRef] [PubMed]
  7. J. Yu, M. Huang, D. Qian, L. Chen, and G. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008). [CrossRef]
  8. C. W. Chow, C. H. Yeh, Y. F. Wu, H. Y. Chen, Y. H. Lin, J. Y. Sung, Y. Liu, and C. L. Pan, “13Gbit/s WDM-OFDM PON using RSOA-based colourless ONU with seeding light source in local exchange,” Electron. Lett.45, 1235–1236 (2011).
  9. N. Cvijetic, M. F. Huang, E. Ip, Y. Shao, Y. K. Huang, M. Cvijetic, and T. Wang, “1.92 Tb/s coherent DWDM-OFDMA-PON with no high-speed ONU-side electronics over 100 km SSMF and 1:64 passive split,” Opt. Express19(24), 24540–24545 (2011). [CrossRef] [PubMed]
  10. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol.28(4), 484–493 (2010). [CrossRef]
  11. A. Li, A. Al Amin, X. Chen, and W. Shieh, “Transmission of 107-Gb/s mode and polarization multiplexed CO-OFDM signal over a two-mode fiber,” Opt. Express19(9), 8808–8814 (2011). [CrossRef] [PubMed]
  12. S. L. Jansen, I. Morita, T. C. W. Schenk, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF,” J. Lightwave Technol.27(3), 177–188 (2009). [CrossRef]
  13. C. Chow, C. Yeh, C. Wang, F. Shih, and S. Chi, “Rayleigh backs-cattering performance of OFDM-QAM in carrier distributed passive optical networks,” IEEE Photon. Technol. Lett.20(22), 1848–1850 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited