OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6267–6285

Source localization approach for functional DOT using MUSIC and FDR control

Jin Wook Jung, Ok Kyun Lee, and Jong Chul Ye  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 6267-6285 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1568 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we formulate diffuse optical tomography (DOT) problems as a source localization problem and propose a MUltiple SIgnal Classification (MUSIC) algorithm for functional brain imaging application. By providing MUSIC spectra for major chromophores such as oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR), we are able to investigate the spatial distribution of brain activities. Moreover, the false discovery rate (FDR) algorithm can be applied to control the family-wise error in the MUSIC spectra. The minimum distance between the center of mass in DOT and the Montreal Neurological Institute (MNI) coordinates of target regions in experiments was between approximately 6 and 18mm, and the displacement of the center of mass in DOT and fMRI ranged between 12 and 28mm, which demonstrate the legitimacy of the DOT-based imaging. The proposed brain mapping method revealed its potential as an alternative algorithm to monitor the brain activation.

© 2012 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 23, 2011
Revised Manuscript: February 7, 2012
Manuscript Accepted: February 20, 2012
Published: March 5, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Jin Wook Jung, Ok Kyun Lee, and Jong Chul Ye, "Source localization approach for functional DOT using MUSIC and FDR control," Opt. Express 20, 6267-6285 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci.20, 435–442 (1997). [CrossRef] [PubMed]
  2. V. Ntziachristos and B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res3, 41–46 (2001). [CrossRef] [PubMed]
  3. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nature Medicine9, 123–128 (2003). [CrossRef] [PubMed]
  4. D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W. F. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab.20, 469–477 (2000). [CrossRef] [PubMed]
  5. S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. Kim, H. Merkle, and K. Ugurbil, “Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging,” Proc. Nati. Acad. Sci. USA89, 5951–5955 (1992). [CrossRef]
  6. J. Steinbrink, A. Villringer, F. Kempf, D. Haux, S. Boden, and H. Obrig, “Illuminating the BOLD signal: Combined fMRI-fNIRS studies,” Magnetic Resonance Imaging24, 495–505 (2006). [CrossRef] [PubMed]
  7. A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” NeuroImage30, 521–528 (2006). [CrossRef]
  8. A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, and A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express9, 272–286 (2001). [CrossRef] [PubMed]
  9. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” NeuroImage23, S275–S288 (2004). [CrossRef] [PubMed]
  10. H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt.48, D137–D143 (2009). [CrossRef] [PubMed]
  11. N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front Neuroenergetics2, 1–8 (2010).
  12. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Nat. Acad. Sci. USA104, 12169–12174 (2007). [CrossRef] [PubMed]
  13. S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics2, 1–8 (2010).
  14. B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. S, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” NeuroImage47, 148–156 (2009). [CrossRef] [PubMed]
  15. H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt.15, 046005 (2010). [CrossRef] [PubMed]
  16. F. Abdelnour, C. Genovese, and T. Huppert, “Hierarchical Bayesian regularization of reconstructions for diffuse optical tomography using multiple priors,” Biomed. Opt. Express1, 1084–1103 (2010). [CrossRef]
  17. M. Jacob, Y. Bresler, V. Toronov, X. Zhang, and A. Webb, “Level-set algorithm for the reconstruction of functional activation in near-infrared spectroscopic imaging,” J. Biomed. Opt.11, 064029 (2006). [CrossRef]
  18. D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,” Appl. Opt.44, 1957–1968 (2005). [CrossRef] [PubMed]
  19. V. Kolehmainen, S. Prince, S. R. Arridge, and J. P. Kaipio, “State-estimation approach to the nonstationary optical tomography problem,” J. Opt. Soc. Am. A20, 876–889 (2003). [CrossRef]
  20. S. Prince, V. Kolehmainen, J. P. Kaipio, M. A. Franceschini, D. Boas, and S. R. Arridge, “Time-series estimation of biological factors in optical diffusion tomography,” Phys. Med. Biol.48, 1491–1504 (2003). [CrossRef] [PubMed]
  21. Y. Zhang, D. H. Brooks, and D. A. Boas, “A haemodynamic response function model in spatio-temporal diffuse optical tomography,” Phys. Med. Biol.50, 4625–4644 (2005). [CrossRef] [PubMed]
  22. H. Krim and M. Viberg, “Two decades of array signal processing research,” IEEE Signal Proc. Mag. pp. 67–94 (1996). [CrossRef]
  23. D. L. Donoho, “Compressed sensing,” IEEE Trans. Information Theory52, 1289–1306 (2006). [CrossRef]
  24. E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52, 489–509 (2006). [CrossRef]
  25. J. M. Kim, O. K. Lee, and J. C. Ye, “Compressive MUSIC: revisiting the link between compressive sensing and array signal processing,” IEEE Trans. Inf. Theory58, 278–301 (2012). [CrossRef]
  26. O. K. Lee, J. M. Kim, Y. Bresler, and J. C. Ye, “Compressive diffuse optical tomography: non-iterative exact reconstruction using joint sparsity,” IEEE Trans. Med. Imag.30, 1129–1142 (2011). [CrossRef]
  27. R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antennas Propag.34, 276–280 (1986). [CrossRef]
  28. P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and Cramer-Rao bound,” IEEE Trans. Acoust., Speech, Signal Process.37, 720–741 (1989). [CrossRef]
  29. Y. Benjamini and Y. Hochberg, “Controlling the flase discovery rate: a practical and powerful approach to multiple testing,” J. R. Stat. Soc. Ser B (Methodl.)57, 289–300 (1995).
  30. J. Mosher, P. Lewis, and R. Leahy, “Multiple dipole modelling and localization from spatio-temporal MEG data,” IEEE Trans. Biomed. Eng.39, 541–557 (1992). [CrossRef] [PubMed]
  31. C. Genovese, N. Lazar, and T. Nichols, “Thresholding of statistical maps in functional neuroimaging using the false discovery rate,” NeuroImage15, 870–878 (2002). [CrossRef] [PubMed]
  32. A. Singh and I. Dan, “Exploring the false discovery rate in multichannel NIRS,” NeuroImage33, 542–549 (2006). [CrossRef] [PubMed]
  33. T. Li, H. Gong, and Q. Luo, “Visualization of light propagation in visible Chinese human head for functional near-infrared spectroscopy,” J. Biomed. Opt.16, 045001 (2011). [CrossRef] [PubMed]
  34. J. C. Ye, S. Tak, K. E. Jang, J. Jung, and J. Jang, “NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy,” NeuroImage44, 428–447 (2009). [CrossRef]
  35. T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” NeuroImage57, 991–1002 (2011). [CrossRef] [PubMed]
  36. K. E. Jang, S. Tak, J. Jung, J. Jang, and J. C. Ye, “Wavelet minimum description length detrending for near-infrared spectroscopy,” J. Biomed. Opt.14, 034004 (2009). [CrossRef] [PubMed]
  37. K. J. Friston, O. Josephs, E. Zarahn, A. P. Holmes, S. Rouquette, and J.-B. Poline, “To smooth or not to smooth? bias and efficiency in fmri time-series analysis,” NeuroImage12, 196–208 (2000). [CrossRef] [PubMed]
  38. K. J. Friston, J. Ashburner, S. Kiebel, T. Nichols, and W. Penny, eds., Statistical parametric mapping: The analysis of functional brain images (Academic Press, Sandiego, CA, USA, 2006).
  39. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express17, 20178–20190 (2009). [CrossRef] [PubMed]
  40. A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. Eric, L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” NeuroImage49, 561–567 (2010). [CrossRef]
  41. N. Okui and E. Okada, “Wavelength dependence of crosstalk in dual-wavelength measurement of oxy- and deoxy-hemoglogin,” J. Biomed. Opt.10, 011015 (2005). [CrossRef]
  42. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. pp. 967–981 (1999). [CrossRef] [PubMed]
  43. E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt.42, 2915–2922 (2003). [CrossRef] [PubMed]
  44. S. A. Prahl, “Optical Properties Spectra,” Http://omlc.ogi.edu/spectra/index.html (Oregon Medical Laser Clinic), 2001.
  45. W. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990). [CrossRef]
  46. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43, 2465–2478 (1998). [CrossRef] [PubMed]
  47. W. C. Chew, Waves and Fields in Inhomogeneous Media, 2nd ed. (IEEE Press, New York, 1995).
  48. J. Chen and X. Huo, “Theoretical results on sparse representations of multiple measurement vectors,” IEEE Trans. Signal Process.54, 4634–4643 (2006). [CrossRef]
  49. A. Fletcher, S. Rangan, and V. Goyal, “Necessary and sufficient conditions for sparsity pattern recovery,” IEEE Trans. Inf. Theory55, 5758–5772 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited