OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6286–6305

Self-mixing in multi-transverse mode semiconductor lasers: model and potential application to multi-parametric sensing

L. Columbo, M. Brambilla, M. Dabbicco, and G. Scamarcio  »View Author Affiliations


Optics Express, Vol. 20, Issue 6, pp. 6286-6305 (2012)
http://dx.doi.org/10.1364/OE.20.006286


View Full Text Article

Enhanced HTML    Acrobat PDF (5696 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A general model is proposed for a Vertical Cavity Surface Emitting Laser (VCSEL) with medium aspect ratio whose field profile can be described by a limited set of Gauss-Laguerre modes. The model is adapted to self-mixing schemes by supposing that the output beam is reinjected into the laser cavity by an external target mirror. We show that the self-mixing interferometric signal exhibits features peculiar of the spatial distribution of the emitted field and the target-reflected field and we suggest an applicative scheme that could be exploited for experimental displacement measurements. In particular, regimes of transverse mode-locking are found, where we propose an operational scheme for a sensor that can be used to simultaneously measure independent components of the target displacement like target translations along the optical axis (longitudinal axis) and target rotations in a plane orthogonal to the optical axis (transverse plane).

© 2012 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(280.3420) Remote sensing and sensors : Laser sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 11, 2011
Revised Manuscript: December 9, 2011
Manuscript Accepted: January 2, 2012
Published: March 5, 2012

Citation
L. Columbo, M. Brambilla, M. Dabbicco, and G. Scamarcio, "Self-mixing in multi-transverse mode semiconductor lasers: model and potential application to multi-parametric sensing," Opt. Express 20, 6286-6305 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6286


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. M. Kane and K. A. Shore, Unlocking Dynamical Diversity. Optical Feedback Effects on Semiconductor Lasers (John Wiley and Sons, 2005). [CrossRef]
  2. S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback inteferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron.31, 113–119 (1995). [CrossRef]
  3. S. Ottonelli, M. Dabbicco, F. De Lucia, and G. Scamarcio, “Simultaneous measurement of linear and transverse displacements by laser self-mixing,” Appl. Opt.48, 1784–1789 (2009). [CrossRef] [PubMed]
  4. J. R. Tucker, J. L. Baque, Y. L. Lim, A. V. Zvyagin, and A. D. Rakic, “Parallel self-mixing imaging system based on an array of vertical-cavity surface-emitting lasers,” Appl. Opt.46, 6237–6246 (2007). [CrossRef] [PubMed]
  5. Y. L. Lim, M. Nikolic, K. Bertling, R. Kliese, and A. D. Rakic, “Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout,” Opt. Express17, 5517–5525 (2009). [CrossRef] [PubMed]
  6. Y. L. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. A. Jacobs, and A. D. Rakic, “Self-mixing flow sensor using a monolithic VCSEL array with parallel readout,” Opt. Express18, 11720–11727 (2010). [CrossRef] [PubMed]
  7. “Z. Liu, D. Lin, H. Jiang, and C. Yin, “Roll angle interferometer by means of wave plates,” Sens. Actuators, A104, 127–131 (2003). [CrossRef]
  8. C-M. Wu and Y-T. Chuang, “Roll angular displacement measurement system with microradian accuracy,” Sens. Actuators, A116, 145–149 (2004). [CrossRef]
  9. W. S. Park and H. S. Cho, “Measurement of fine 6-degrees-of-freedom displacement of rigid bodies through splitting a laser beam: experimental investigation,” Opt. Eng.41, 860–871 (2002). [CrossRef]
  10. C. J. Chen, P. D. Lin, and W. Y. Jywe, “An optoelectronic measurement system for measuring 6-degree-of-freedom motion error of rotary parts,” Opt. Express15, 14601–14617 (2007). [CrossRef] [PubMed]
  11. S. Ottonelli, M. Dabbicco, F. De Lucia, M. di Vietro, and G. Scamarcio, “Laser-self-mixing interferometry for mechatronics applications,” Sensors9, 3527–3548 (2009). [CrossRef]
  12. F. P. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, A. Ancona, T. Sibillano, F. De Lucia, P. M. Lugará, and G. Scamarcio, “Simultaneous measurement of multiple target displacements by self-mixing interferometry in a single laser diode,” Opt. Express19, 16160–16173 (2011). [CrossRef] [PubMed]
  13. C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, l. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface-emitting lasers,” Appl. Phys. Lett.57, 218–220 (1990). [CrossRef]
  14. H. Lia, T. L. Lucas, J. G. McInerney, and R. A. Morgan, “Transverse modes and patterns of electrically pumped vertical-cavity surface-emitting semiconductor lasers,” Chaos, Solitons Fractals4, 1619–1636 (1994). [CrossRef]
  15. J. U. Nöckel, G. Bourdon, E. Le Ru, R. Adams, I. Robert, J.-M. Moison, and I. Abram, “Mode structure and ray dynamics of a parabolic dome microcavity,” Phys. Rev. E62, 8677–8699 (2000). [CrossRef]
  16. S.-H. Park, Y. Park, H. Kim, H. Jeon, S. M. Hwang, J. K. Lee, S. H. Nam, B. C. Koh, J. Y. Sohn, and D. S. Kim, “Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation,” Appl. Phys. Lett.80, 183–185 (2002). [CrossRef]
  17. M. T. Cha and R. Gordon, “Spatially Filtered Feedback for Mode Control in Vertical-Cavity Surface-Emitting Lasers,” J. Lightwave Technol.26, 3893–3900 (2008). [CrossRef]
  18. F. Prati, A. Tesei, L. A. Lugiato, and R.J. Horowicz, “Stable states in surface-emitting semiconductor lasers,” Chaos, Solitons Fractals4, 1637–1654 (1994). [CrossRef]
  19. A. Valle, J. Sarma, and K. A. Shore, “Dynamics of transverse mode competition in vertical cavity surface emitting laser diodes,” Opt. Commun.115, 297–302 (1995). [CrossRef]
  20. L. A. Lugiato, “Spatio-temporal structures. Part I,” Phys. Rep.219, 293–310 (1992). [CrossRef]
  21. F. Prati, M. Travagnin, and L. A. Lugiato, “Logic gates and optical switching with vertical-cavity surface-emitting lasers,” Phys. Rev. A55, 690–700 (1997). [CrossRef]
  22. M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A52, 1728–1739 (1995). [CrossRef] [PubMed]
  23. F. Prati, G. Tissoni, M. San Miguel, and N. B Abraham, “Vector vortices and polarization state of low-order transverse modes in a VCSEL,” Opt. Commun.143, 133–146 (1997). [CrossRef]
  24. J Martń-Regalado, S. Balle, M. San Miguel, A. Valle, and L. Pesquera, “Polarization and transverse-mode selection in quantum-well vertical-cavity surface-emitting lasers: index- and gain-guided devices,” Quantum Semi-classic. Opt.9, 713–736 (1997). [CrossRef]
  25. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser proprieties,” IEEE J. Quantum Electron.16, 347–355 (1980). [CrossRef]
  26. J. Y. Law and G. P. Agrawal, “Effects of optical feedback on static and dynamic characteristics of vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron.3, 353-3-58 (1997).
  27. M. S. Torre, C. Masoller, and P. Mandel, “Transverse mode dynamics in vertical-cavity surface-emitting lasers with optical feedback,” Phys. Rev. A66, 053817 (2002). [CrossRef]
  28. K. Green, B. Krauskopf, and D. Lenstra, “External cavity mode structure of a two-mode VCSEL subject to optical feedback,” Opt. Commun.277, 359–371 (2007). [CrossRef]
  29. G. Oppo and G. Dalessandro, “Gauss–Laguerre modes - a sensible basis for laser dynamics,” Opt. Commun.88, 130–136 (1992). [CrossRef]
  30. L. A. Lugiato, F. Prati, L. M. Narducci, P. Ru, J. R. Tredicce, and D. K. Bandy, “Role of transverse effects in laser instabilities,” Phys. Rev. A37, 3847–3866 (1988). [CrossRef] [PubMed]
  31. M. Brambilla, M. Cattaneo, L. A. Lugiato, R. Pirovano, F. Prati, A. J. Kent, G.-L. Oppo, A. B. Coates, C. O. Weiss, C. Green, E. J. DAngelo, and J. R. Tredicce, “Dynamical transverse laser patterns. I. Theory,” Phys. Rev. A49, 1427–1451 (1994). [CrossRef] [PubMed]
  32. A. B. Coates, C. O. Weiss, C. Green, E. J. DAngelo, J. R. Tredicce, M. Brambilla, M. Cattaneo, L. A. Lugiato, R. Pirovano, F. Prati, A. J. Kent, and G.-L. Oppo, “Dynamical transverse laser patterns. II. Experiments,” Phys. Rev. A49, 1452–1466(1994). [CrossRef] [PubMed]
  33. F. Prati, M. Brambilla, and L. A. Lugiato, “Pattern formation in lasers,” Riv. Nuovo Cimento17, 1–85 (1994). [CrossRef]
  34. S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Kndl, M. Miller, and R. Jger, “Cavity solitons as pixels in semiconductor microcavities,” Nature419, 699–702 (2002). [CrossRef] [PubMed]
  35. C. O. Weiss, H. R. Telle, K. Staliunas, and M. Brambilla, “Restless optical vortex,” Phys. Rev. A47, R1616–R1619 (1993). [CrossRef] [PubMed]
  36. E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100 – GHz resonance frequencies and 80 – GHz intrinsic bandwidths,” Opt. Express16, 6609–6618 (2008). [CrossRef] [PubMed]
  37. G Slekys, I Ganne, I Sagnes, and R Kuszelewicz, “Optical pattern formation in passive semiconductor microresonators,” J. Opt. B: Quantum Semiclassical Opt.2, 443–446 (2000). [CrossRef]
  38. A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D: Appl. Phys.37, R75–R85 (2004). [CrossRef]
  39. D. Guo, M. Wang, and S. Tan, “Self-mixing interferometer based on sinusoidal phase modulating technique,” Opt. Express13, 1537–1543 (2005). [CrossRef] [PubMed]
  40. F. A. Chollet, G. M. Hegde, A. K. Asundi, and A. Q. Liu, “Simple extra-short external cavity laser self-mixing interferometer for acceleration sensing,” Proc. SPIE4596, 272–279 (2001). [CrossRef]
  41. G. Giuliani, S. Donati, M. Passerini, and T. Bosch, “Angle measurement by injection detection in a laser diode,” Opt. Eng.40, 95–99 (2001). [CrossRef]
  42. S. Wolff and H. Fouckhardt, “Intracavity stabilization of broad area lasers by structured delayed optical feedback,” Opt. Express7, 222–227 (2000). [CrossRef] [PubMed]
  43. A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPEG (194 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited