OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6306–6315

Reflectivity and polarization dependence of polysilicon single-film broadband photonic crystal micro-mirrors

Sora Kim, Sanja Hadzialic, Aasmund S. Sudbo, and Olav Solgaard  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 6306-6315 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1757 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the fabrication of 2-D photonic crystal (PC) micro-mirrors, and Finite Difference Time Domain (FDTD) simulations and measurements of their reflectance spectra and polarization dependence at normal incidence. The PC mirrors were fabricated in free-standing thin polysilicon membranes supported by silicon nitride films for stress compensation. Greater than 90% reflectivity is measured over a wavelength range of 35 nm from 1565 nm to 1600 nm with small polarization dependence. Our FDTD simulations show that fabrication errors on the order of tens of nanometers can strongly affect the reflection spectra. When the fabrication errors are kept below this level, FDTD simulations on perfectly periodic structures accurately predict the reflection spectra of the fabricated PC mirrors, despite their sensitivity to the fabrication errors.

© 2012 OSA

OCIS Codes
(310.6860) Thin films : Thin films, optical properties
(230.5298) Optical devices : Photonic crystals
(050.6624) Diffraction and gratings : Subwavelength structures
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Photonic Crystals

Original Manuscript: September 20, 2011
Revised Manuscript: November 21, 2011
Manuscript Accepted: November 24, 2011
Published: March 5, 2012

Sora Kim, Sanja Hadzialic, Aasmund S. Sudbo, and Olav Solgaard, "Reflectivity and polarization dependence of polysilicon single-film broadband photonic crystal micro-mirrors," Opt. Express 20, 6306-6315 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun.55(6), 377–380 (1985). [CrossRef]
  2. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett.23(19), 1556–1558 (1998). [CrossRef] [PubMed]
  3. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007). [CrossRef]
  4. J. Jiang and G. P. Nordin, “Optimal design of sub-wavelength dielectric gratings as broadband mirrors,” OFC/NFEC ’05, Anaheim, USA (2005).
  5. S. Peng and G. M. Morris, “Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings,” Opt. Lett.21(8), 549–551 (1996). [CrossRef] [PubMed]
  6. W. Suh, M. F. Yanik, O. Solgaard, and S.-H. Fan, “Displacement-Sensitive Photonic Crystal Structures Based on Guided Resonance in Photonic Crystal Slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003). [CrossRef]
  7. O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry,” Opt. Express16(17), 13090–13103 (2008). [CrossRef] [PubMed]
  8. I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst.18(4), 924–932 (2009). [CrossRef]
  9. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004). [CrossRef] [PubMed]
  10. A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, and J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate,” Sens. Actuators A Phys.85(1–3), 116–123 (2000). [CrossRef]
  11. J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, and A. H. Heuer, “A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the multipoly process,” J. Microelectromech. Syst.9(4), 485–494 (2000). [CrossRef]
  12. S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter,” Opt. Express14(8), 3129–3137 (2006). [CrossRef] [PubMed]
  13. J. H. Ho, C. L. Lee, T. F. Lei, and T. S. Chao, “Ellipsometry measurement of the complex refractive index and thickness of polysilicon thin films,” J. Opt. Soc. Am. A7(2), 196–205 (1990). [CrossRef]
  14. J. A. Monsoriu, E. Silvestre, A. Ferrando, P. Andres, and M. V. Andres, “Sloped-wall thin-film photonic crystal waveguides,” IEEE Photon. Technol. Lett.17(2), 354–356, 354–356 (2005). [CrossRef]
  15. J. Topolancik, F. Vollmer, R. Ilic, and M. Crescimanno, “Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder,” Opt. Express17(15), 12470–12480 (2009). [CrossRef] [PubMed]
  16. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005). [CrossRef]
  17. B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008). [CrossRef]
  18. D. M. Beggs, L. O'Faolain, and T. F. Krauss, “Accurate determination of the functional hole size in photonic crystal slabs using optical methods,” Photonics Nanostruct. Fundamentals Appl.6(3–4), 213–218 (2008). [CrossRef]
  19. E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, “Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett.89(18), 181108 (2006). [CrossRef]
  20. S. Fan and J. D. Joannopoloulos, “Analysis of guided resonance in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited