OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6316–6324

Periodic interactions between solitons and dispersive waves during the generation of non-coherent supercontinuum radiation

Chu Liu, Eric J. Rees, Toni Laurila, Shuisheng Jian, and Clemens F. Kaminski  »View Author Affiliations


Optics Express, Vol. 20, Issue 6, pp. 6316-6324 (2012)
http://dx.doi.org/10.1364/OE.20.006316


View Full Text Article

Enhanced HTML    Acrobat PDF (1599 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a numerical study of interactions between dispersive waves (DWs) and solitons during supercontinuum generation in photonic crystal fibers pumped with picosecond laser pulses. We show how the soliton-induced trapping potential evolves along the fiber and affects the dynamics of a DW-soliton pair. Individual frequency components of the DW periodically interact with the soliton resulting in stepwise frequency blue shifts. In contrast, the ensemble blue shifts of all frequency components in the DW appear to be quasi-continuous. The step size of frequency up-conversion and the temporal separation between subsequent soliton-DW interactions are governed by the potential well which confines the soliton-DW pair and which changes in time.

© 2012 OSA

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 1, 2011
Revised Manuscript: February 17, 2012
Manuscript Accepted: February 27, 2012
Published: March 5, 2012

Citation
Chu Liu, Eric J. Rees, Toni Laurila, Shuisheng Jian, and Clemens F. Kaminski, "Periodic interactions between solitons and dispersive waves during the generation of non-coherent supercontinuum radiation," Opt. Express 20, 6316-6324 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6316


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).
  2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  3. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000). [CrossRef] [PubMed]
  4. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002). [CrossRef] [PubMed]
  5. S. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol.12(2), 122–147 (2006). [CrossRef]
  6. J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express15(18), 11385–11395 (2007), http://www.opticsinfobase.org/abstract.cfm?id=141022 . [CrossRef] [PubMed]
  7. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express16(14), 10178–10188 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-14-10178 . [CrossRef] [PubMed]
  8. S. S. Kiwanuka, T. K. Laurila, and C. F. Kaminski, “Sensitive method for the kinetic measurement of trace species in liquids using cavity enhanced absorption spectroscopy with broad bandwidth supercontinuum radiation,” Anal. Chem.82(17), 7498–7501 (2010). [CrossRef] [PubMed]
  9. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002). [CrossRef] [PubMed]
  10. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif)3(1), 175–205 (2010). [CrossRef] [PubMed]
  11. S. Schlachter, S. Schwedler, A. Esposito, G. S. Kaminski Schierle, G. D. Moggridge, and C. F. Kaminski, “A method to unmix multiple fluorophores in microscopy images with minimal a priori information,” Opt. Express17(25), 22747–22760 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-25-22747 . [CrossRef] [PubMed]
  12. J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc.227(3), 203–215 (2007). [CrossRef] [PubMed]
  13. C. Liu, E. J. Rees, T. K. Laurila, S. Jian, and C. F. Kaminski, “An adaptive filter for studying the life cycle of optical rogue waves,” Opt. Express18(25), 26113–26122 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-25-26113 . [CrossRef] [PubMed]
  14. D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys.82(2), 1287–1299 (2010). [CrossRef]
  15. A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express14(21), 9854–9863 (2006), http://www.opticsinfobase.org/abstract.cfm?id=116387 . [CrossRef] [PubMed]
  16. A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A76(5), 053803 (2007). [CrossRef]
  17. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics1(11), 653–657 (2007). [CrossRef]
  18. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  19. A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett.95(21), 213902 (2005). [CrossRef] [PubMed]
  20. R. Driben, F. Mitschke, and N. Zhavoronkov, “Cascaded interactions between Raman induced solitons and dispersive waves in photonic crystal fibers at the advanced stage of supercontinuum generation,” Opt. Express18(25), 25993–25998 (2010). [CrossRef] [PubMed]
  21. A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett.106(16), 163901 (2011). [CrossRef] [PubMed]
  22. L. Gagnon and P. A. Bélanger, “Soliton self-frequency shift versus Galilean-like symmetry,” Opt. Lett.15(9), 466–468 (1990). [CrossRef] [PubMed]
  23. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt.37(3), 546–550 (1998). [CrossRef] [PubMed]
  24. B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B81(2-3), 337–342 (2005). [CrossRef]
  25. J. Hult, “A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol.25(12), 3770–3775 (2007). [CrossRef]
  26. A. M. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightwave Technol.27(18), 3984–3991 (2009). [CrossRef]
  27. S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Express13(18), 6912–6918 (2005), http://www.opticsinfobase.org/abstract.cfm?&id=85363 . [CrossRef] [PubMed]
  28. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B24(8), 1771–1785 (2007). [CrossRef]
  29. G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express12(19), 4614–4624 (2004), http://www.opticsinfobase.org/abstract.cfm?id=81189 . [CrossRef] [PubMed]
  30. D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016619 (2005). [CrossRef] [PubMed]
  31. A. V. Gorbach and D. V. Skryabin, “Bouncing of a dispersive pulse on an accelerating soliton and stepwise frequency conversion in optical fibers,” Opt. Express15(22), 14560–14565 (2007), http://www.opticsinfobase.org/abstract.cfm?id=144404 . [CrossRef] [PubMed]
  32. S. T. Sørensen, A. Judge, C. L. Thomsen, and O. Bang, “Optimum fiber tapers for increasing the supercontinuum-group-acceleration matching,” Opt. Lett.36(6), 816–818 (2011). [CrossRef] [PubMed]
  33. A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett.29(20), 2411–2413 (2004). [CrossRef] [PubMed]
  34. A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett.33(15), 1723–1725 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Supplementary Material


» Media 1: MOV (227 KB)     
» Media 2: MOV (562 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited