OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6325–6339

Compact MEMS-driven pyramidal polygon reflector for circumferential scanned endoscopic imaging probe

Xiaojing Mu, Guangya Zhou, Hongbin Yu, Yu Du, Hanhua Feng, Julius Ming Lin Tsai, and Fook Siong Chau  »View Author Affiliations


Optics Express, Vol. 20, Issue 6, pp. 6325-6339 (2012)
http://dx.doi.org/10.1364/OE.20.006325


View Full Text Article

Enhanced HTML    Acrobat PDF (4561 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel prototype of an electrothermal chevron-beam actuator based microelectromechanical systems (MEMS) platform has been successfully developed for circumferential scan. Microassembly technology is utilized to construct this platform, which consists of a MEMS chevron-beam type microactuator and a micro-reflector. The proposed electrothermal microactuators with a two-stage electrothermal cascaded chevron-beam driving mechanism provide displacement amplification, thus enabling a highly reflective micro-pyramidal polygon reflector to rotate a large angle for light beam scanning. This MEMS platform is ultra-compact, supports circumferential imaging capability and is suitable for endoscopic optical coherence tomography (EOCT) applications, for example, for intravascular cancer detection.

© 2012 OSA

OCIS Codes
(230.4000) Optical devices : Microstructure fabrication
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Optical Devices

History
Original Manuscript: December 2, 2011
Revised Manuscript: January 12, 2012
Manuscript Accepted: January 12, 2012
Published: March 5, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Xiaojing Mu, Guangya Zhou, Hongbin Yu, Yu Du, Hanhua Feng, Julius Ming Lin Tsai, and Fook Siong Chau, "Compact MEMS-driven pyramidal polygon reflector for circumferential scanned endoscopic imaging probe," Opt. Express 20, 6325-6339 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6325


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science276(5321), 2037–2039 (1997). [CrossRef] [PubMed]
  3. P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, J. G. Fujimoto, K. Madden, J. Schmitt, J. Goodnow, and C. Petersen, “Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography,” Opt. Lett.29(19), 2261–2263 (2004). [CrossRef] [PubMed]
  4. J. Su, J. Zhang, L. Yu, and Z. Chen, “In vivo three-dimensional microelectromechanical endoscopic swept source optical coherence tomography,” Opt. Express15(16), 10390–10396 (2007). [CrossRef] [PubMed]
  5. P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett.29(11), 1236–1238 (2004). [CrossRef] [PubMed]
  6. J. A. Ayers, W. C. Tang, and Z. Chen, “360° rotating micro mirror for transmitting and sensing optical coherence tomography signals,” in Proceedings of IEEE Sensors (2004), Vol. 1, pp. 497–500.
  7. M.-H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “1998 Electrostatic comb drive-actuated micromirrors for laser-beam scanning and positioning,” IEEE J. Microelectromech. Syst.7(1), 27–37 (1998). [CrossRef]
  8. W. Piyawattanametha, P. Patterson, D. Hah, H. Toshiyoshi, and M. Wu, “A 2-D scanner by surface and bulk micromachined angular vertical comb actuators,” in Proceeding of IEEE/LEOS Int. Conf. of Optical MEMS (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2003), pp. 93–94.
  9. I. Jung, U. Krishnamoorthy, and O. Solgaard, “High fill-factor two axis gimbaled tip-tilt-piston micromirror array actuated by self-aligned vertical electrostatic comb drives,” J. Microelectromech. Syst.15(3), 563–571 (2006). [CrossRef]
  10. V. Milanovic, G. A. Matus, and D. T. McCormick, “Gimbal-less monolithic silicon actuators for tip-tilt-piston micromirror applications,” IEEE J. Sel. Top. Quantum Electron.10(3), 462–471 (2004). [CrossRef]
  11. A. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst.15(4), 786–794 (2006). [CrossRef]
  12. K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, and J. J. Bernstein, “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Opt. Express15(26), 18130–18140 (2007). [CrossRef] [PubMed]
  13. H. Xie, Y. Pan, and G. Fedder, “An SCS CMOS micromirror for optical coherence tomographic imaging,” in Proceedings of IEEE Conference on Microelectromechanical Systems (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2002), pp. 495–499.
  14. A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.10(3), 636–642 (2004). [CrossRef]
  15. L. Wu and H. Xie, “Electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging,” J. Micro/Nanolith. MEMS MOEMS8, 013030 (2009).
  16. L. Wu and H. Xie, “A scanning micromirror with stationary rotation axis and dual reflective surfaces for 360° forward-view endoscopic imaging,” in Proceedings of 15th International Conf. Solid-State, Actuators and Microsystems. (Transducers, Denver, CO, USA, 2009), pp. 2222–2225.
  17. Y. Gianchandani and K. Najafi, “Bent-beam strain sensors,” J. Microelectromech. Syst.5(1), 52–58 (1996). [CrossRef]
  18. L. Que, J. Park, and Y. Gianchandani, “Bent-beam electro-thermal actuators for high force applications,” in Proceeding of 12th IEEE Conference on MEMS (Institute of Electrical and Electronics Engineers, Orlando, FL, 1999), pp. 31–36.
  19. L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-beam electrothermal actuators—Part I: Single beam and cascaded devices,” J. Microelectromech. Syst.10(2), 247–254 (2001). [CrossRef]
  20. J.-S. Park, L. L. Chu, A. D. Oliver, and Y. B. Gianchandani, “Bent-beam electrothermal actuators—Part II: Linear and rotary microengines,” J. Microelectromech. Syst.10(2), 255–262 (2001). [CrossRef]
  21. C. Lott, T. McLain, J. Harb, and L. Howell, “Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator,” Sens. Actuators A Phys.101(1-2), 239–250 (2002). [CrossRef]
  22. Y. Shimamura, K. Udeshi, L. Que, J. Park, and Y. Gianchandani, “Impact behavior and energy transfer efficiency of pulse-driven bent-beam electrothermal actuators,” J. Microelectromech. Syst.15(1), 101–110 (2006). [CrossRef]
  23. Y. Zhang, Q. Huang, R. Li, and W. Li, “Macromodeling for polysilicon cascaded bent beam electrothermal microactuators,” Sens. Actuators A Phys.128(1), 165–175 (2006). [CrossRef]
  24. L. Chu, L. Que, D. Oliver, and Y. Gianchandani, “Lifetime studies of electrothermal bent-beam actuators in single-crystal silicon and polysilicon,” J. Microelectromech. Syst.15(3), 498–506 (2006). [CrossRef]
  25. P. Nallamuthu, T. Hwang, D. Jeong, S. Moon, S. Seo, and J. Lee, “Contact resistance of micromachined electrical switches incorporating a chevron-type bi-stable spring,” J. Micromech. Microeng.21(1), 015018 (2011). [CrossRef]
  26. B. Ando, S. Baglio, N. Savalli, and C. Trigona, “Cascaded ‘Triple-Bent-Beam’ MEMS sensor for contactless temperature measurements in nonaccessible environments,” IEEE Trans. Instrum. Meas.60(4), 1348–1357 (2011). [CrossRef]
  27. W. Fan and D. Zhang, “A simple approach to convex corner compensation in anisotropic KOH etching on a (100) silicon wafer,” J. Micromech. Microeng.16(10), 1951–1957 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited