OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6375–6384

On-chip coherent combining of angled-grating diode lasers toward bar-scale single-mode lasers

Yunsong Zhao and Lin Zhu  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 6375-6384 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3122 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Single mode operation of broad-area diode lasers, which is the key to obtain high power, high brightness sources, is difficult due to highly nonlinear materials and strong coupling between gain and index. Conventional broad-area lasers usually operate with multiple modes and have poor beam quality. Laser bars usually consist of incoherently combined broad-area single emitters placed side by side. In this article, we have demonstrated a novel integrated laser architecture in which Bragg diffraction is used to realize simultaneous modal control and coherent combining of broad-area diode lasers. Our experimental results show that two 100μm wide, 1.3mm long InP broad-area lasers provide near-diffraction-limited output beam and are coherently combined at the same time without any external optical components. Furthermore, our design can be expanded to a coherently combined broad-area laser array that turns a laser bar into a coherent single mode laser with diffraction-limited beam quality.

© 2012 OSA

OCIS Codes
(140.2010) Lasers and laser optics : Diode laser arrays
(140.2020) Lasers and laser optics : Diode lasers
(140.3298) Lasers and laser optics : Laser beam combining

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 15, 2011
Revised Manuscript: February 26, 2012
Manuscript Accepted: February 26, 2012
Published: March 5, 2012

Yunsong Zhao and Lin Zhu, "On-chip coherent combining of angled-grating diode lasers toward bar-scale single-mode lasers," Opt. Express 20, 6375-6384 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Salzman, T. Venkatesan, S. Margalit, and A. Yariv, “An unstable resonator semiconductor laser,” in Optical Society of America Meeting (San Diego, CA, 1984), paper ThV3.
  2. M. L. Tilton, G. C. Dente, A. H. Paxton, J. Cser, R. K. Defreez, C. E. Moeller, and D. Depatie, “High power, nearly diffraction-limited output from a semiconductor laser with an unstable resonator,” IEEE J. Quantum Electron.27, 2098–2108 (1991). [CrossRef]
  3. E. S. Kintzer, J. N. Walpole, S. R. Chinn, C. A. Wang, and L. J. Missaggia, “High power strained layer amplifiers and lasers with tapered gain regions,” IEEE Photon. Technol. Lett.5, 605–608 (1993). [CrossRef]
  4. Z. Bao, R. K. Defreez, P. D. Carleson, C. Largent, C. Moeller, and G. C. Dente, “Spatio-spectral characteristics of a high power, high brightness cw InGaAs/AlGaAs unstable resonator semiconductor laser,” Electron. Lett.29, 1597–1599 (1993). [CrossRef]
  5. D. Masanotti and F. Causa, “Optical guiding properties of high-brightness parabolic bow-tie laser arrays,” IEEE J. Quantum Electron.41, 909–916 (2005). [CrossRef]
  6. J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39, 289–298 (2003). [CrossRef]
  7. R. K. Huang, J. P. Donnelly, L. J. Missaggia, C. T. Harris, J. Plant, D. E. Mull, and W. D. Goodhue, “High-power nearly diffraction-limited AlGaAs-InGaAs semiconductor slab-coupled optical waveguide laser,” IEEE Photon. Technol. Lett.15, 900–902 (2003). [CrossRef]
  8. R. K. Huang, L. J. Missaggia, J. P. Donnelly, C. T. Harris, and G. W. Turner, “High-brightness slab-coupled optical waveguide laser arrays,” IEEE Photon. Technol. Lett.17, 959–961 (2005). [CrossRef]
  9. L. J. Missaggia, R. K. Huang, B. Chann, R. Swint, J. P. Donnelly, A. Sanchez, and G. W. Turner, “Packaging and thermal management of high-power, slab-coupled optical waveguide laser arrays for beam combining,” in Electronic Components and Technology Conference (2008), 998–1004.
  10. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron.11, 567–577 (2005). [CrossRef]
  11. B. Chann, R. K. Huang, L. J. Missaggia, C. T. Harris, Z. L. Liau, A. K. Goyal, J. P. Donnelly, T. Y. Fan, A. Sanchez-Rubio, and G. W. Turner, “Near-diffraction-limited diode laser arrays by wavelength beam combining,” Opt. Lett.30, 2104–2106 (2005). [CrossRef] [PubMed]
  12. D. Vijayakumar, O. B. Jensen, R. Ostendorf, T. Westphalen, and B. Thestrup, “Spectral beam combining of a 980nm tapered diode laser bar,” Opt. Express18, 893–898 (2010). [CrossRef] [PubMed]
  13. R. K. Huanga, B. Channa, L. J. Missaggiaa, S. J. Augsta, M. K. Connorsa, G. W. Turnera, A. Sanchez, J. P. Donnellya, J. L. Hostetlerb, C. Miesterb, and F. Dorsch, “Coherently combined diode laser arrays and stacks,” in Lasers and Electro-Optics, 2009 and 2009 Conference on Quantum Electronics and Laser Science (2009), paper CWF1.
  14. D. F. Welch, D. Scifres, P. Cross, H. Kung, W. Streifer, R. D. Burnham, and J. Yaeli, “High-power (575 mW) single-lobed emission from a phased-array laser,” Electron. Lett.21, 603–605 (1985). [CrossRef]
  15. E. Kapon, J. Katz, and A. Yariv, “Supermode analysis of phase locked arrays of semiconductor lasers,” Opt. Lett.9, 125–127 (1984). [CrossRef] [PubMed]
  16. D. F. Welch, P. S. Cross, D. R. Scifres, W. Streifer, and R. D. Burnham, “High power (cw) in-phase locked ‘Y’ coupled laser arrays,” Appl. Phys. Lett.49, 1632–1634 (1986). [CrossRef]
  17. D. Botez, P. Hayashida, L. J. Mawst, and T. J. Roth, “Diffraction-limited-beam, high-power operation from X-junction coupled phase-locked arrays of AlGaAs/GaAs diode lasers,” Appl. Phys. Lett.53, 1366–1368 (1988). [CrossRef]
  18. B. Hermansson and D. Yevick, “Analysis of Y-junction and coupled laser arrays,” Appl. Opt.28, 66–73 (1989). [CrossRef] [PubMed]
  19. D. Botez, L. J. Mawst, G. Peterson, and T. J. Roth, “Resonant optical transmission and coupling in phase-locked diode laser arrays of antiguides: The resonant optical waveguide array,” Appl. Phys. Lett.54, 2183–2185 (1989). [CrossRef]
  20. C. Zmudzinski, D. Botez, and L. J. Mawst, “Coherent, 1 watt operation of large aperture resonant arrays of antiguided diode lasers,” Appl. Phys. Lett.62, 2914–2916 (1993). [CrossRef]
  21. C. Chang-Hasnain, D. F. Welch, D. R. Scifres, J. R. Whinnery, A. Dienes, and R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett.49, 614–616 (1986). [CrossRef]
  22. G. A. Henderson and D. L. Begley, “Injection-locked semiconductor laser array using a graded-index rod: a computational model,” Appl. Opt.28, 4548–4551 (1989). [CrossRef] [PubMed]
  23. R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and D. Scifres, “High-power, cw, diffraction-limited, GaAlAs laser diode array in an external Talbot cavity,” Appl. Phys. Lett.58, 2586–2588 (1991). [CrossRef]
  24. D. Mehuys, W. Streifer, R. G. Waarts, and D. F. Welch, “Modal analysis of linear Talbot-cavity semiconductor lasers,” Opt. Lett.16, 823–825 (1991). [CrossRef] [PubMed]
  25. C. J. Corcoran and K. A. Pasch, “Modal analysis of a self-Fourier laser,” J. Opt. A Pure Appl. Opt.7, L1–L7 (2005). [CrossRef]
  26. L. Goldberg, J. F. Weller, D. Mehuys, D. F. Welch, and D. R. Scifres, “12W broadarea semiconductor amplifier with diffraction-limited optical output,” Electron. Lett.27, 927–929 (1991). [CrossRef]
  27. J. N. Walpole, E. S. Kintzer, S. R. Chinn, C. A. Wang, and L. J. Missaggia, “High-power strained-layer In-GaAs/AlGaAs tapered traveling wave amplifier,” Appl. Phys. Lett.61, 740–742 (1992). [CrossRef]
  28. S. D. Demars, K. M. Dzurko, R. J. Lang, D. Welch, D. Scifres, and A. Hardy, “Angled-grating distributed feedback laser with 1W cw single-mode diffraction-limited output at 980nm,” in Lasers and Electro-Optics, 1996. CLEO ’96., Summaries of papers presented at the Conference, (1996), 77–78.
  29. V. V. D. Wong, S. D. DeMars, A. Schoenfelder, and R. J. Lang, “Angled-grating distributed-feedback laser with 1.2W cw single-mode diffraction-limited output at 10.6μm,” in Laser and Electro-Optics, 1998. CLEO ’98., Technical Digest, Summaries of papers presented at the Conference (1998), 34–35.
  30. K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, “Properties of ion-implanted high-power angled-grating distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron.9, 1172–1178 (2003). [CrossRef]
  31. L. Zhu, A. Scherer, and A. Yariv, “Modal gain analysis of transverse bragg resonance waveguide lasers with and without transverse defects,” IEEE J. Quantum Electron.43, 934–940 (2007). [CrossRef]
  32. L. Zhu, “Photonic crystal bragg lasers: design, fabrication, and characterization,” Ph.D. dissertation (Caltech, 2008).
  33. R. J. Lang, K. Dzurko, A. A. Hardy, S. Demars, A. Schoenfelder, and D. F. Welch, “Theory of grating-confined broad-area lasers,” IEEE J. Quantum Electron.34, 2196–2210 (1998). [CrossRef]
  34. A. M. Sarangan, M. Wright, J. Marciante, and D. Bossert, “Spectral properties of angled-grating high-power semiconductor lasers,” IEEE J. Quantum Electron.35, 1220–1230 (1999). [CrossRef]
  35. R. Guther, “Beam propagation in an active planar waveguide with an angled bragg grating (α laser),” J. Mod. Opt.45, 1537–1546 (1998). [CrossRef]
  36. L. Zhu, P. Chak, J. K. S. Poon, G. A. Derose, A. Yariv, and A. Scherer, “Electrically-pumped, broad-area, single-mode photonic crystal lasers,” Opt. Express15, 961–963 (2007). [CrossRef]
  37. A. F. Glova, “Phase locking of optically coupled lasers,” Quantum Electron.33, 283–306 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited