OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6406–6411

Dissipative soliton in actively mode-locked fiber laser

Ruixin Wang, Yitang Dai, Li Yan, Jian Wu, Kun Xu, Yan Li, and Jintong Lin  »View Author Affiliations


Optics Express, Vol. 20, Issue 6, pp. 6406-6411 (2012)
http://dx.doi.org/10.1364/OE.20.006406


View Full Text Article

Enhanced HTML    Acrobat PDF (960 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A dissipative soliton in an all-normal-dispersion actively mode-locked ytterbium-doped fiber laser is reported for the first time. Pulses with 10-ps duration and edge-to-edge bandwidth of 9 nm are generated, and then extra-cavity compressed down to 560 fs due to the large chirp. Widely wavelength tuning between 1031 and 1080 nm is achieved by adjusting the driving frequency only. Our simulation shows that the proposed laser operates in the dissipative soliton shaping regime.

© 2012 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3538) Lasers and laser optics : Lasers, pulsed
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 4, 2012
Revised Manuscript: February 26, 2012
Manuscript Accepted: February 27, 2012
Published: March 5, 2012

Citation
Ruixin Wang, Yitang Dai, Li Yan, Jian Wu, Kun Xu, Yan Li, and Jintong Lin, "Dissipative soliton in actively mode-locked fiber laser," Opt. Express 20, 6406-6411 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6406


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express14(21), 10095–10100 (2006). [CrossRef] [PubMed]
  2. J. M. Soto-Crespo, N. Akhmediev, and G. Town, “Interrelation between various branches of stable solitons in dissipative systems-conjecture for stability criterion,” Opt. Commun.199(1-4), 283–293 (2001). [CrossRef]
  3. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett.32(16), 2408–2410 (2007). [CrossRef] [PubMed]
  4. N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A372(17), 3124–3128 (2008). [CrossRef]
  5. K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett.34(5), 593–595 (2009). [CrossRef] [PubMed]
  6. G. T. Harvey and L. F. Mollenauer, “Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission,” Opt. Lett.18(2), 107–109 (1993). [CrossRef] [PubMed]
  7. T. F. Carruthers and I. N. Duling, “10-GHz, 1.3-ps erbium fiber laser employing soliton pulse shortening,” Opt. Lett.21(23), 1927–1929 (1996). [CrossRef] [PubMed]
  8. C. M. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron.36(2), 145–150 (2000). [CrossRef]
  9. L. J. Kong, X. S. Xiao, and C. X. Yang, “Tunable all-normal-dispersion Yb-doped mode-locked fiber lasers,” Conference on Lasers and Electro-Optics (CLEO), JTuD70 (2009).
  10. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett.92(21), 213902 (2004). [CrossRef] [PubMed]
  11. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser: Analogy with the ststes of the matter,” Appl. Phys. B99(1-2), 107–114 (2010). [CrossRef]
  12. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B25(2), 140–148 (2008). [CrossRef]
  13. M. A. Abdelalim, Y. Logvin, D. A. Khalil, and H. Anis, “Properties and stability limits of an optimized mode-locked Yb-doped femtosecond fiber laser,” Opt. Express17(4), 2264–2279 (2009). [CrossRef] [PubMed]
  14. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997). [CrossRef]
  15. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A77(2), 023814 (2008). [CrossRef]
  16. K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express16(15), 11453–11458 (2008). [CrossRef] [PubMed]
  17. D. Mortag, D. Wandt, U. Morgner, D. Kracht, and J. Neumann, “Sub-80-fs pulses from an all-fiber-integrated dissipative-soliton laser at 1 µm,” Opt. Express19(2), 546–551 (2011). [CrossRef] [PubMed]
  18. L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett.31(12), 1788–1790 (2006). [CrossRef] [PubMed]
  19. Z. X. Zhang and G. X. Dai, “All-normal-dispersion dissipative soliton ytterbium fiber laser without dispersion compensation and additional filter,” IEEE Photon. J.3(6), 1023–1029 (2011). [CrossRef]
  20. S. L. Pan, X. F. Zhao, W. K. Yu, and C. Y. Lou, “Dispersion-tuned multiwavelength actively mode-locked fiber laser using a hybrid gain medium,” Opt. Laser Technol.40(6), 854–857 (2008). [CrossRef]
  21. S. L. Pan and C. Y. Lou, “Multiwavelength pulse generation using an actively mode-locked erbium-doped fiber ring laser based on distributed dispersion cavity,” IEEE Photon. Technol. Lett.18(4), 604–606 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited