OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6412–6420

Experimental characterization of the transfer function for a Silver-dielectric superlens

Ciaran P. Moore and Richard J. Blaikie  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 6412-6420 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1095 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a technique for experimentally determining the spatial-frequency modulation transfer function for near-field super-resolution imaging systems and present such a modulation transfer function for a 20|40|20 nm poly(vinyl alcohol)~(PVA)|Silver|PVA superlens exposed to 365 nm wavelength (i-line) radiation through a 50-nm thick tungsten mask. An extensive spectral characterization is achieved from only two exposures, with transmission coefficients determined for spatial frequencies as high as 13 µm−1, corresponding to λ / 4.75. The resulting transfer function is in good agreement with analytical models that incorporate the effects of mask-superlens interactions.

© 2012 OSA

OCIS Codes
(100.1160) Image processing : Analog optical image processing
(100.6640) Image processing : Superresolution
(110.4850) Imaging systems : Optical transfer functions
(260.2110) Physical optics : Electromagnetic optics
(110.3925) Imaging systems : Metrics
(110.6895) Imaging systems : Three-dimensional lithography

ToC Category:
Image Processing

Original Manuscript: January 25, 2012
Revised Manuscript: February 28, 2012
Manuscript Accepted: February 29, 2012
Published: March 5, 2012

Ciaran P. Moore and Richard J. Blaikie, "Experimental characterization of the transfer function for a Silver-dielectric superlens," Opt. Express 20, 6412-6420 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  2. C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A25(4), 911–918 (2008). [CrossRef] [PubMed]
  3. D. O. S. Melville and R. J. Blaikie, “Analysis and optimization of multilayer Silver superlenses for near-field optical lithography,” Physica B394(2), 197–202 (2007). [CrossRef]
  4. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett.82(10), 1506–1508 (2003). [CrossRef]
  5. K. Lee, Y. Jung, and K. Kim, “Near-field phase correction for superresolution enhancement,” Phys. Rev. B80(3), 033109 (2009). [CrossRef]
  6. R. Kotyński, “Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers,” Opto-Electron. Rev.18(4), 366–375 (2010). [CrossRef]
  7. C. P. Moore, R. J. Blaikie, and M. D. Arnold, “An improved transfer-matrix model for optical superlenses,” Opt. Express17(16), 14260–14269 (2009). [CrossRef] [PubMed]
  8. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express13(6), 2127–2134 (2005). [CrossRef] [PubMed]
  9. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  10. P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96(4), 043102 (2010). [CrossRef]
  11. J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett.71(26), 3773–3775 (1997). [CrossRef]
  12. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett.75(22), 3560–3562 (1999). [CrossRef]
  13. T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mitzutani, and R. Kuroda, “Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a-Si mask,” Appl. Phys. Lett.89(3), 033113 (2006). [CrossRef]
  14. C. P. Moore, R. J. Blaikie, and M. D. Arnold, “Improved analytical models for single- and multi-layer Silver superlenses,” MRS Proc.1182, 1182–EE11–02 (2009). [CrossRef]
  15. C. P. Moore and R. J. Blaikie, “Flexible poly(dimethyl siloxane) support layers for the evanescent characterization of near-field lithography systems,” J. Vac. Sci. Technol. B29(6), 06FH02 (2011). [CrossRef]
  16. D. O. S. Melville and R. J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography,” J. Opt. Soc. Am. B23(3), 461–467 (2006). [CrossRef]
  17. C. P. Moore, Optical superlenses: quality and fidelity in Silver-dielectric near-field imaging systems, PhD. Thesis (University of Canterbury, New Zealand, 2012), Chap. 7.
  18. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  19. J. C. Seferis, “Refractive indices of polymers,” in Polymer Handbook, J. Brandrup and E. H. Immergut, eds. (John Wiley & Sons, New York, 1989).
  20. D. R. Lide, The CRC Handbook of Chemistry and Physics (CRC Press, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited