OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6478–6487

Coherent anti-Stokes Raman scattering with broadband excitation and narrowband probe

Matthias Lütgens, Susana Chatzipapadopoulos, and Stefan Lochbrunner  »View Author Affiliations


Optics Express, Vol. 20, Issue 6, pp. 6478-6487 (2012)
http://dx.doi.org/10.1364/OE.20.006478


View Full Text Article

Enhanced HTML    Acrobat PDF (1320 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An improved CARS setup based on noncollinear optical parametric amplifiers (NOPAs) is presented which combines broad tunability and a wide excitation bandwidth with good spectral and temporal resolution. Picosecond Raman pump and probe pulses are generated by a modified narrowband NOPA. Combining them with sub-50 fs Stokes pulses results in highly time resolved CARS spectra with line widths down to 20 cm−1. The determination of a vibrational decoherence time is demonstrated for chloroform. Beating phenomena in case of overlapping Raman bands and an increase of spectral structure for coalescing bands are observed for cyclohexane and an ionic liquid respectively.

© 2012 OSA

OCIS Codes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(300.0300) Spectroscopy : Spectroscopy
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(300.6530) Spectroscopy : Spectroscopy, ultrafast

ToC Category:
Spectroscopy

History
Original Manuscript: January 26, 2012
Revised Manuscript: February 20, 2012
Manuscript Accepted: February 20, 2012
Published: March 5, 2012

Citation
Matthias Lütgens, Susana Chatzipapadopoulos, and Stefan Lochbrunner, "Coherent anti-Stokes Raman scattering with broadband excitation and narrowband probe," Opt. Express 20, 6478-6487 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6478


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev.137(3A), A801–A818 (1965). [CrossRef]
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).
  3. S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonanat broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett.87(26), 264103 (2005). [CrossRef]
  4. M. Fickenscher, H.-G. Purucker, and A. Laubereau, “Resonant vibrational dephasing investigated by high-precision femtosecond CARS,” Chem. Phys. Lett.191(1-2), 182–188 (1992). [CrossRef]
  5. M. Schmitt, G. Knopp, A. Materny, and W. Kiefer, “Femtosecond time-resolved coherent anti-Stokes Raman scattering for the simultaneous study of ultrafast ground and excited state dynamics: iodine vapour,” Chem. Phys. Lett.270(1-2), 9–15 (1997). [CrossRef]
  6. R. Lausten, O. Smirnova, B. J. Sussman, S. Gräfe, A. S. Mouritzen, and A. Stolow, “Time- and frequency-resolved coherent anti-Stokes Raman scattering spectroscopy with sub-25 fs laser pulses,” J. Chem. Phys.128(24), 244310 (2008). [CrossRef] [PubMed]
  7. T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett.310(1-2), 65–72 (1999). [CrossRef]
  8. Y. H. Wang, X. Du, X. He, and Y. Q. Yang, “Investigation of coherence transfer between ‘CH3’ and ‘CH2’ groups in ethanol with time resolved multiplex CARS technique,” Vib. Spectrosc.50(2), 303–306 (2009). [CrossRef]
  9. S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun.281(2), 319–325 (2008). [CrossRef]
  10. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett.7(8), 350–352 (1982). [CrossRef] [PubMed]
  11. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999). [CrossRef]
  12. A. Volkmer, “Coherent vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D Appl. Phys.38(5), R59–R81 (2005). [CrossRef]
  13. F. El-Diasty, “Coherent anti-Stokes Raman scattering: spectroscopy and microscopy,” Vib. Spectrosc.55(1), 1–37 (2011). [CrossRef]
  14. A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys.50(3), 607–665 (1978). [CrossRef]
  15. F. M. Kamga and M. G. Sceats, “Pulse-sequenced coherent anti-Stokes Raman scattering spectroscopy: a method for suppression of the nonresonant background,” Opt. Lett.5(3), 126–128 (1980). [CrossRef] [PubMed]
  16. W. Zinth, M. C. Nuss, and W. Kaiser, “A new Raman technique of superior spectral resolution,” Chem. Phys. Lett.88(3), 257–261 (1982). [CrossRef]
  17. W. Zinth, M. C. Nuss, and W. Kaiser, “Line-narrowing transient Raman technique which resolves closely spaced hydrogen-bonded aggregates,” Phys. Rev. A30(2), 1139–1141 (1984). [CrossRef]
  18. S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, and V. G. Tunkin, “Time-domain coherent active Raman spectroscopy of free-nitrogen jet,” J. Opt. Soc. Am. B2(4), 640–648 (1985). [CrossRef]
  19. J. W. Hahn, C. W. Park, and S. N. Park, “Broadband coherent anti-Stokes Raman spectroscopy with a modeless dye laser,” Appl. Opt.36(27), 6722–6728 (1997). [CrossRef] [PubMed]
  20. J. P. Kuehner, M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “High-resolution broadband N2 coherent anti-Stokes Raman spectroscopy: comparison of measurements for conventional and modeless broadband dye lasers,” Appl. Opt.42(33), 6757–6767 (2003). [CrossRef] [PubMed]
  21. S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett.30(23), 3222–3224 (2005). [CrossRef] [PubMed]
  22. W. Zinth, R. Leonhardt, W. Holzapfel, and W. Kaiser, “Fast dephasing processes studied with a femtosecond coherent Raman system,” IEEE J. Quantum Electron.24(2), 455–459 (1988). [CrossRef]
  23. M. Müller and J. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B106(14), 3715–3723 (2002). [CrossRef]
  24. J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B106(34), 8493–8498 (2002). [CrossRef]
  25. K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett.387(4-6), 436–441 (2004). [CrossRef]
  26. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys.125(4), 044502 (2006). [CrossRef] [PubMed]
  27. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science316(5822), 265–268 (2007). [CrossRef] [PubMed]
  28. J. Rehbinder, C. Pohling, T. Buckup, and M. Motzkus, “Multiplex coherent anti-Stokes Raman microspectroscopy with tailored Stokes spectrum,” Opt. Lett.35(22), 3721–3723 (2010). [CrossRef] [PubMed]
  29. M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett.99(10), 101109 (2011). [CrossRef]
  30. T. Wilhelm, J. Piel, and E. Riedle, “Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,” Opt. Lett.22(19), 1494–1496 (1997). [CrossRef] [PubMed]
  31. J. A. Shirley, R. J. Hall, and A. C. Eckbreth, “Folded BOXCARS for rotational Raman studies,” Opt. Lett.5(9), 380–382 (1980). [CrossRef] [PubMed]
  32. S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett.89(12), 121124 (2006). [CrossRef]
  33. D. T. Co, J. V. Lockard, D. W. McCamant, and M. R. Wasielewski, “Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump,” Appl. Opt.49(10), 1880–1885 (2010). [CrossRef] [PubMed]
  34. A. Weigel and N. P. Ernsting, “Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy,” J. Phys. Chem. B114(23), 7879–7893 (2010). [CrossRef] [PubMed]
  35. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B16(4), 637–650 (1999). [CrossRef]
  36. E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B71(3), 457–465 (2000). [CrossRef]
  37. K. Tominaga and K. Yoshihara, “Overtone vibrational dephasing of chloroform studied by higher-order nonlinear spectroscopy,” J. Phys. Chem. A102(23), 4222–4228 (1998). [CrossRef]
  38. W. Zinth, A. Laubereau, and W. Kaiser, “Time resolved observation of resonant and non-resonant contributions to the nonlinear susceptibility χ(3),” Opt. Commun.26(3), 457–462 (1978). [CrossRef]
  39. D. Meschede, Optics, Light and Lasers (Wiley-VCH, 2007).
  40. F. Moya, S. A. J. Druet, and J. P. E. Taran, “Gas spectroscopy and temperature measurement by coherent Raman anti-Stokes scattering,” Opt. Commun.13(2), 169–174 (1975). [CrossRef]
  41. H. Graener and A. Laubereau, “High resolution Fourier transform Raman spectroscopy with ultrashort laser pulses,” Opt. Commun.54(3), 141–146 (1985). [CrossRef]
  42. R. Leonhardt, W. Holzapfel, W. Zinth, and W. Kaiser, “Terahertz quantum beats in molecular liquids,” Chem. Phys. Lett.133(5), 373–377 (1987). [CrossRef]
  43. B. N. Toleutaev, T. Tahara, and H. Hamaguchi, “Broadband (1000 cm−1) multiplex CARS spectroscopy: application to polarization sensitve and time-resolved measurements,” Appl. Phys. B59(4), 369–375 (1994). [CrossRef]
  44. F. A. Miller and H. R. Golob, “The infrared and Raman spectra of cyclohexane and cyclohexane-d12,” Spectrochim. Acta [A]20, 1517–1530 (1964).
  45. T. Köddermann, C. Wertz, A. Heintz, and R. Ludwig, “Ion-pair formation in the ionic liquid 1-ethyl-3-methylimidazolium bis(triflyl)imide as a function of temperature and concentration,” ChemPhysChem7(9), 1944–1949 (2006). [CrossRef] [PubMed]
  46. R. G. Snyder, H. L. Strauss, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains,” J. Phys. Chem.86(26), 5145–5150 (1982). [CrossRef]
  47. R. A. MacPhail, H. L. Strauss, R. G. Snyder, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 2. Long, all-trans chains,” J. Phys. Chem.88(3), 334–341 (1984). [CrossRef]
  48. I. Hartl and W. Zinth, “A novel spectrometer system for the investigation of vibrational energy relaxation with sub-picosecond time resolution,” Opt. Commun.160(1-3), 184–190 (1999). [CrossRef]
  49. J. C. Deàk, Y. Pang, T. D. Sechler, Z. Wang, and D. D. Dlott, “Vibrational energy transfer across a reverse micelle surfactant layer,” Science306(5695), 473–476 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited