OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6575–6583

Mode profile imaging and loss measurement for uniform and tapered single-mode 3D waveguides in diffusive photopolymer

Chunfang Ye, Keith T. Kamysiak, Amy C. Sullivan, and Robert R. McLeod  »View Author Affiliations


Optics Express, Vol. 20, Issue 6, pp. 6575-6583 (2012)
http://dx.doi.org/10.1364/OE.20.006575


View Full Text Article

Enhanced HTML    Acrobat PDF (1101 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate single-mode uniform and parabolically tapered three-dimensional waveguides fabricated via direct-write lithography in diffusion-based photopolymers. Modulation of the writing power is shown to compensate Beer-Lambert absorption in the single-photon initiator and to provide precise control of modal tapers. A laminated sample preparation is introduced to enable full 3D characterization of these modal tapers without the need for sample polishing which is difficult for this class of polymer. The accuracy and repeatability of this modal characterization is shown to allow precise measurement of propagation loss from single samples. These testing procedures are used to demonstrate single-mode waveguides with 0.147 dB/cm excess propagation loss and symmetrical tapers up to 1:2.5 using 1.5 microwatts of continuous write power.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3450) Lasers and laser optics : Laser-induced chemistry
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: December 20, 2011
Revised Manuscript: February 21, 2012
Manuscript Accepted: February 26, 2012
Published: March 6, 2012

Citation
Chunfang Ye, Keith T. Kamysiak, Amy C. Sullivan, and Robert R. McLeod, "Mode profile imaging and loss measurement for uniform and tapered single-mode 3D waveguides in diffusive photopolymer," Opt. Express 20, 6575-6583 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6575


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  2. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express14(1), 291–297 (2006). [CrossRef] [PubMed]
  3. J. Ishihara, K. Komatsu, O. Sugihara, and T. Kaino, “Fabrication of three-dimensional calixarene polymer waveguides using two-photon assisted polymerization,” Appl. Phys. Lett.90(3), 033511 (2007). [CrossRef]
  4. K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett.27(20), 1782–1784 (2002). [CrossRef] [PubMed]
  5. K. L. Deng, T. Gorczyca, B. K. Lee, H. Xia, R. Guida, and T. Karras, “Self-aligned single-mode polymer waveguide interconnections for efficient chip-to-chip optical coupling,” IEEE J. Sel. Top. Quantum Electron.12(5), 923–930 (2006). [CrossRef]
  6. O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photon. Technol. Lett.16(3), 804–806 (2004). [CrossRef]
  7. R. S. Fan and R. B. Hooker, “Tapered polymer single-mode waveguides for mode transformation,” J. Lightwave Technol.17(3), 466–474 (1999). [CrossRef]
  8. R. Inaba, M. Kato, M. Sagawa, and H. Akahoshi, “Two-dimensional mode size transformation by \delta n-controlled polymer waveguides,” J. Lightwave Technol.16(4), 620–624 (1998). [CrossRef]
  9. S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett.18(13), 1035–1037 (1993). [CrossRef] [PubMed]
  10. C. J. Cogswell and C. J. R. Sheppard, “Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging,” J. Microsc.165(1), 81–101 (1992). [CrossRef]
  11. S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt.13(2), 024020 (2008). [CrossRef] [PubMed]
  12. A. C. Sullivan and R. R. McLeod, “Tomographic reconstruction of weak, replicated index structures embedded in a volume,” Opt. Express15(21), 14202–14212 (2007). [CrossRef] [PubMed]
  13. M. R. Ayres and R. R. McLeod, “Scanning transmission microscopy using a position-sensitive detector,” Appl. Opt.45(33), 8410–8418 (2006). [CrossRef] [PubMed]
  14. T. Wilson, J. N. Gannaway, and C. J. R. Sheppard, “Optical fibre profiling using a scanning optical microscope,” Opt. Quantum Electron.12(4), 341–345 (1980). [CrossRef]
  15. W. J. Gambogi, A. M. Weber, and T. J. Trout, “Advances and applications of Dupont holographic photopolymers,” Proc. SPIE2043, 2–13 (1994). [CrossRef]
  16. K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage: From Theory to Practical Systems (John Wiley & Sons, 2010).
  17. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt.46(3), 295–301 (2007). [CrossRef] [PubMed]
  18. B. Cai, K. Komatsu, O. Sugihara, M. Kagami, M. Tsuchimori, T. Matsui, and T. Kaino, “A three-dimensional polymeric optical circuit fabrication using a femtosecond laser-assisted self written waveguide technique,” Appl. Phys. Lett.92(25), 253302 (2008). [CrossRef]
  19. D. A. Waidman, R. T. Ingwall, P. K. Dhal, M. G. Homer, E. S. Koib, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE2689, 127–141 (1996). [CrossRef]
  20. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett.24(7), 487–489 (1999). [CrossRef] [PubMed]
  21. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express13(15), 5676–5681 (2005). [CrossRef] [PubMed]
  22. DataRay Incorporated, WinCamDTM Series CCD/CMOS Beam Imagers User Manual, Rev. 1007b, page 42, DataRay Incorporated, Bella Vista CA (2010).
  23. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983), pp. 337–342.
  24. K. A. Berchtold, T. M. Lovestead, and C. N. Bowman, “Coupling chain length dependent and reaction diffusion controlled termination in the free radical polymerization of multifunctional(meth)acrylates,” Macromolecules35(21), 7968–7975 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited