OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6584–6597

Theory and modeling of electrically tunable metamaterial devices using inter-subband transitions in semiconductor quantum wells

Alon Gabbay and Igal Brener  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 6584-6597 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2036 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we propose a new and versatile mechanism for electrical tuning of planar metamaterials: strong coupling of metamaterial resonances to engineered intersubband transitions that can be tuned through the application of an electrical bias. We present the general formalism that allows calculating the permittivity tensor for intersubband transitions in generic semiconductor heterostructures and we study numerically the specific case of coupling and tuning metamaterials in the thermal infrared through coupling to biased GaAs semiconductor quantum wells. This tuning mechanism can be scaled from the visible to the far infrared by the proper choice of metamaterials and semiconductor heterostructures.

© 2012 OSA

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.3060) Integrated optics : Infrared
(130.3120) Integrated optics : Integrated optics devices
(160.3918) Materials : Metamaterials

ToC Category:
Integrated Optics

Original Manuscript: December 22, 2011
Revised Manuscript: February 8, 2012
Manuscript Accepted: February 14, 2012
Published: March 6, 2012

Alon Gabbay and Igal Brener, "Theory and modeling of electrically tunable metamaterial devices using inter-subband transitions in semiconductor quantum wells," Opt. Express 20, 6584-6597 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).
  2. T. Cui, D. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications (Springer, 2009).
  3. H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006). [CrossRef] [PubMed]
  4. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009). [CrossRef]
  5. X. G. Peralta, I. Brener, W. J. Padilla, E. W. Young, A. J. Hoffman, M. J. Cich, R. D. Averitt, M. C. Wanke, J. B. Wright, H. T. Chen, J. F. O'hara, A. J. Taylor, J. Waldman, W. D. Goodhue, J. Li, and J. Reno, “External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials,” Metamaterials (Amst.)4(2-3), 83–88 (2010). [CrossRef]
  6. X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett.96(10), 101111 (2010). [CrossRef]
  7. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express17(20), 18330–18339 (2009). [CrossRef] [PubMed]
  8. E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express17(10), 8548–8551 (2009). [CrossRef] [PubMed]
  9. A. Gabbay, J. Reno, J. R. Wendt, A. Gin, M. C. Wanke, M. B. Sinclair, E. Shaner, and I. Brener, “Interaction between metamaterial resonators and intersubband transitions in semiconductor quantum wells,” Appl. Phys. Lett.98(20), 203103 (2011). [CrossRef]
  10. D. Dietze, A. Benz, G. Strasser, K. Unterrainer, and J. Darmo, “Terahertz meta-atoms coupled to a quantum well intersubband transition,” Opt. Express19(14), 13700–13706 (2011). [CrossRef] [PubMed]
  11. E. Rosencher, P. Bois, J. Nagle, and S. Delattre, “Second harmonic generation by intersubband transitions in compositionally asymmetrical MQWs,” Electron. Lett.25(16), 1063 (1989). [CrossRef]
  12. C. Sirtori, F. Capasso, D. L. Sivco, A. L. Hutchinson, and Y. A. Cho, “Resonant Stark tuning of second-order susceptibility in coupled quantum wells,” Appl. Phys. Lett.60(2), 151 (1992). [CrossRef]
  13. E. Rosencher and P. Bois, “Model system for optical nonlinearities: asymmetric quantum wells,” Phys. Rev. B Condens. Matter44(20), 11315–11327 (1991). [CrossRef] [PubMed]
  14. J. Faist and C. Sirtori, Intersubband Transitions in Quantum Wells: Physics and Device Applications I, Semiconductors and Semimetals (Academic Press, 2000), Vol. 62.
  15. M. Helm, IntersubbandTransitions in Quantum Wells:Physics and Device Applications, Semiconductors and Semimetals (Academic Press, 2000), Vol. 62.
  16. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, 1 ed. (Wiley-Interscience, 1991).
  17. E. R. Brown and S. J. Eglash, “Calculation of the intersubband absorption strength in ellipsoidal-valley quantum wells,” Phys. Rev. B Condens. Matter41(11), 7559–7568 (1990). [CrossRef] [PubMed]
  18. F. G. Pikus, “Excitons in quantum wells with a two dimensional electron gas,” Sov. Phys. Semicond.26, 2633 (1992).
  19. F. Stern and W. E. Howard, “Properties of semiconductor surface inversion layers in the electric quantum limit,” Phys. Rev.163(3), 816–835 (1967). [CrossRef]
  20. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th ed. (World Scientific Publishing Company, 2004).
  21. R. W. Boyd, Nonlinear Optics (Academic Press, 1992), chap. 3.
  22. The issue of the symmetry of the permittivity tensor when dealing with transparent or passive media as been studied in numerous textbooks and publications (for example see [25]). For simplicity, we choose to display a non-symmetric tensor with the understanding that for computations we use only one diagonal half.
  23. Y. Todorov and C. Sirtori, “Intersubband polaritons in the electrical dipole gauge,” Phys. Rev. B85(4), 045304 (2012). [CrossRef]
  24. L. Wendler and E. Kandler, “Intrasubband and intersubband plasmon-polaritons in semiconductor quantum-wells,” Phys. Status Solidi, B Basic Res.177(1), 9–67 (1993). [CrossRef]
  25. P. H. Tsao, “Derivation and implications of the symmetry property of the permittivity tensor,” Am. J. Phys.61(9), 823–825 (1993). [CrossRef]
  26. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  27. C. M. Soukoulis, T. Koschny, J. Zhou, M. Kafesaki, and E. N. Economou, “Magnetic response of split ring resonators at terahertz frequencies,” Phys. Status Solidi, B Basic Res.244(4), 1181–1187 (2007). [CrossRef]
  28. D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett.11(5), 2104–2108 (2011). [CrossRef] [PubMed]
  29. http://www.lumerical.com , “Fdtd solutions.”
  30. C. Weisbuch and B. Vinter, Quantum Semiconductor Structures—Fundamentals and Applications (Academic Press, 1991).
  31. E. L. Ivchenko, M. A. Kaliteevski, A. V. Kavokin, A. I. Nesvizhskii, and A. F. Ioffe, “Reflection and absorption spectra from microcavities with resonant Bragg quantum wells,” J. Opt. Soc. Am. B13(5), 1061 (1996). [CrossRef]
  32. V. Savona, Z. Hradil, A. Quattropani, and P. Schwendimann, “Quantum theory of quantum-well polaritons in semiconductor microcavities,” Phys. Rev. B Condens. Matter49(13), 8774–8779 (1994). [CrossRef] [PubMed]
  33. E. R. Brown, S. J. Eglash, and K. A. McIntosh, “Observation of normal-incidence intersubband absorption in n-type Al0.09Ga0.91Sb quantum wells,” Phys. Rev. B Condens. Matter46(11), 7244–7247 (1992). [CrossRef] [PubMed]
  34. Q. Du, J. Alperin, and W. I. Wang, “Infrared electroabsorption modulation in AlSb/InAs/AlGaSb/GaSb/AlSb stepped quantum-wells grown by molecular-beam epitaxy,” Appl. Phys. Lett.67(15), 2218–2219 (1995). [CrossRef]
  35. L. A. Samoska, B. Brar, and H. Kroemer, “Strong far-infrared intersubband absorption under normal incidence in heavily n-type doped nonalloy GaSb-AlSb superlattices,” Appl. Phys. Lett.62(20), 2539–2541 (1993). [CrossRef]
  36. Y. Zhang, N. Baruch, and W. I. Wang, “Normal incidence infrared photodetectors using intersubband transitions in GaSb l-valley quantum-wells,” Appl. Phys. Lett.63(8), 1068–1070 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited