OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6616–6621

Configurable metamaterial absorber with pseudo wideband spectrum

Weiren Zhu, Yongjun Huang, Ivan D. Rukhlenko, Guangjun Wen, and Malin Premaratne  »View Author Affiliations


Optics Express, Vol. 20, Issue 6, pp. 6616-6621 (2012)
http://dx.doi.org/10.1364/OE.20.006616


View Full Text Article

Enhanced HTML    Acrobat PDF (1357 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metamaterials attain their behavior due to resonant interactions among their subwavelength components and thus show specific designer features only in a very narrow frequency band. There is no simple way to dynamically increase the operating bandwidth of a narrowband metamaterial, but it may be possible to change its central frequency, shifting the spectral response to a new frequency range. In this paper, we propose and experimentally demonstrate a metamaterial absorber that can shift its central operating frequency by using mechanical means. The shift is achieved by varying the gap between the metamaterial and an auxiliary dielectric slab parallel to its surface. We also show that it is possible to create multiple absorption peaks by adjusting the size and/or shape of the dielectric slab, and to shift them by moving the slab relative to the metamaterial. Specifically, using numerical simulations we design a microwave metamaterial absorber and experimentally demonstrate that its central frequency can be set anywhere in a 1.6 GHz frequency range. The proposed configuration is simple and easy to make, and may be readily extended to THz frequencies.

© 2012 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: February 2, 2012
Revised Manuscript: February 27, 2012
Manuscript Accepted: March 1, 2012
Published: March 6, 2012

Citation
Weiren Zhu, Yongjun Huang, Ivan D. Rukhlenko, Guangjun Wen, and Malin Premaratne, "Configurable metamaterial absorber with pseudo wideband spectrum," Opt. Express 20, 6616-6621 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6616


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000). [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001). [CrossRef] [PubMed]
  3. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008). [CrossRef] [PubMed]
  4. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Theory of negative refraction in periodic stratified metamaterials,” Opt. Express18, 27916–27929 (2010). [CrossRef]
  5. J. B. Pendry, “Perfect cylindrical lenses,” Opt. Express11, 755–760 (2003). [CrossRef] [PubMed]
  6. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008). [CrossRef] [PubMed]
  7. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B78, 241103(R) (2008). [CrossRef]
  8. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104, 207403 (2008). [CrossRef]
  9. J. Park, K. Kim, and B. Lee, “Complete tunneling of light through a composite barrier consisting of multiple layers,” Phys. Rev. A79, 023820 (2009). [CrossRef]
  10. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science3121780–1782 (2006). [CrossRef] [PubMed]
  11. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314977–980 (2006). [CrossRef] [PubMed]
  12. I. Gil, J. Garcha-Garcha, J. Bonache, F. Martín, M. Sorolla, and R. Marqus, “Varactor-loaded split ring resonators for tunablenotch filters at microwave frequencies,” Electron. Lett.40, 1347–1348 (2004). [CrossRef]
  13. I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, “Tunable split-ring resonators for nonlinear negative-index metamaterials,” Opt. Express14, 9344–9349 (2006). [CrossRef] [PubMed]
  14. A. Degiron, J. J. Mock, and D. R. Smith, “Modulating and tuning the response of metamaterials at the unit cell level,” Opt. Express15, 1115–1127 (2007). [CrossRef] [PubMed]
  15. H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterial,” Nat. Photonics2, 295–298 (2008). [CrossRef]
  16. T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys.103, 066105 (2008). [CrossRef]
  17. F. J. Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett.99, 057202 (2007). [CrossRef] [PubMed]
  18. L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires,” Opt. Express16, 17269 (2008). [CrossRef] [PubMed]
  19. F. Zhang, Q. Zhao, W. Zhang, J. Sun, J. Zhou, and D. Lippens, “Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal,” Appl. Phys. Lett.97, 134103 (2010). [CrossRef]
  20. F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19, 1563–1568 (2011). [CrossRef] [PubMed]
  21. H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys.96, 5338–5340 (2004). [CrossRef]
  22. W. Zhu, X. Zhao, and J. Guo, “Multibands of negative refractive indexes in the left-handed metamaterials with multiple dendritic structures,” Appl. Phys. Lett.92, 241116 (2008). [CrossRef]
  23. W. Zhu, X. Zhao, and N. Ji, “Double bands of negative refractive index in the left-handed metamaterials with asymmetric defects,” Appl. Phys. Lett.90, 011911 (2007). [CrossRef]
  24. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett.88, 041109 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited