OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6677–6684

Delivery of high energy Er:YAG pulsed laser light at 2.94µm through a silica hollow core photonic crystal fibre

A. Urich, R. R. J. Maier, B. J. Mangan, S. Renshaw, J. C. Knight, D. P. Hand, and J. D. Shephard  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 6677-6684 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1089 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper the delivery of high power Er:YAG laser pulses through a silica hollow core photonic crystal fibre is demonstrated. The Er:YAG wavelength of 2.94 µm is well beyond the normal transmittance of bulk silica but the unique hollow core guidance allows silica to guide in this regime. We have demonstrated for the first time the ability to deliver high energy pulses through an all-silica fibre at 2.94 µm. These silica fibres are mechanically and chemically robust, biocompatible and have low sensitivity to bending. A maximum pulse energy of 14 mJ at 2.94 µm was delivered through the fibre. This, to our knowledge, is the first time a silica hollow core photonic crystal fibre has been shown to transmit 2.94 μm laser light at a fluence exceeding the thresholds required for modification (e.g. cutting and drilling) of hard biological tissue. Consequently, laser delivery systems based on these fibres have the potential for the realization of novel, minimally-invasive surgical procedures.

© 2012 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(170.1020) Medical optics and biotechnology : Ablation of tissue
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 23, 2011
Revised Manuscript: February 17, 2012
Manuscript Accepted: February 20, 2012
Published: March 7, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

A. Urich, R. R. J. Maier, B. J. Mangan, S. Renshaw, J. C. Knight, D. P. Hand, and J. D. Shephard, "Delivery of high energy Er:YAG pulsed laser light at 2.94µm through a silica hollow core photonic crystal fibre," Opt. Express 20, 6677-6684 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Stübinger, B. von Rechenberg, H. F. Zeilhofer, R. Sader, and C. Landes, “Er:YAG laser osteotomy for removal of impacted teeth: clinical comparison of two techniques,” Lasers Surg. Med. 39(7), 583–588 (2007). [CrossRef] [PubMed]
  2. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5(12), 873–883 (2002). [CrossRef]
  3. N. J. Scott, R. A. Barton, A. L. Casperson, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, “Mid-IR germanium oxide fibers for contact erbium laser tissue ablation in endoscopic surgery,” IEEE J. Sel. Top. Quantum Electron. 13(6), 1709–1714 (2007). [CrossRef]
  4. N. M. Fried, Y. B. Yang, C. A. Chaney, and D. Fried, “Transmission of Q-switched erbium:YSGG (lambda=2.79 microm) and erbium:YAG (lambda=2.94 microm) laser radiation through germanium oxide and sapphire optical fibres at high pulse energies,” Lasers Med. Sci. 19(3), 155–160 (2004). [CrossRef] [PubMed]
  5. A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, and T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” in Proceedings of Biomedical Fiber Optics, (Spie - Int Soc Optical Engineering, Bellingham, 1996), pp. 55–63.
  6. J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19(3), 211–227 (2000). [CrossRef]
  7. B. F. Bowden and J. A. Harrington, “Fabrication and characterization of chalcogenide glass for hollow Bragg fibers,” Appl. Opt. 48(16), 3050–3054 (2009). [CrossRef] [PubMed]
  8. C. J. Hensley, M. A. Foster, B. Shim, and A. L. Gaeta, “Extremely High Coupling and Transmission of High-Powered-Femtosecond Pulses in Hollow-Core Photonic Band-Gap Fiber,” in 2008 Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference, Vols 1–9 (Ieee, New York, 2008), pp. 2010–2011.
  9. P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]
  10. J. P. Parry, T. J. Stephens, J. D. Shephard, J. D. C. Jones, and D. P. Hand, “Analysis of optical damage mechanisms in hollow-core waveguides delivering nanosecond pulses from a Q-switched Nd:YAG laser,” Appl. Opt. 45(36), 9160–9167 (2006). [CrossRef] [PubMed]
  11. J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. S. Russell, and B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12(4), 717–723 (2004). [CrossRef] [PubMed]
  12. J. D. Shephard, W. N. Macpherson, R. R. J. Maier, J. D. C. Jones, D. P. Hand, M. Mohebbi, A. K. George, P. J. Roberts, and J. C. Knight, “Single-mode mid-IR guidance in a hollow-core photonic crystal fiber,” Opt. Express 13(18), 7139–7144 (2005). [CrossRef] [PubMed]
  13. J. D. Shephard, F. Couny, P. S. Russell, J. D. C. Jones, J. C. Knight, and D. P. Hand, “Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications,” Appl. Opt. 44(21), 4582–4588 (2005). [CrossRef] [PubMed]
  14. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996). [CrossRef]
  15. J. T. Walsh and T. F. Deutsch, “Er:YAG laser ablation of tissue: measurement of ablation rates,” Lasers Surg. Med. 9(4), 327–337 (1989). [CrossRef] [PubMed]
  16. L. J. A. F. Rainer, J. H. Campbell, F. D. DeMarco, M. R. Kozolowski, A. J. Morgan, and M. C. Staggs, “Four-harmonic database of laser-damage testing,” Proc. SPIE 1624, 116–127 (1992). [CrossRef]
  17. Y. Nishimoto, M. Otsuki, M. Yamauti, T. Eguchi, Y. Sato, R. M. Foxton, and J. Tagami, “Effect of pulse duration of Er: YAG laser on dentin ablation,” Dent. Mater. J. 27(3), 433–439 (2008). [CrossRef] [PubMed]
  18. A. Urich, T. Delmonte, R. R. J. Maier, D. P. Hand, and J. D. Shephard, “Towards implementation of hollow core fibres for surgical applications,” Proc. SPIE12, 78940W (2011).
  19. M. C. Pierce, M. R. Dickinson, and H. Devlin, “Selective photothermal ablation of tissue with a fibre delivered Er: YAG laser,” Proc. SPIE 3601, 362–368 (1999).
  20. U. Hohenleutner, S. Hohenleutner, W. Bäumler, and M. Landthaler, “Fast and effective skin ablation with an Er:YAG laser: determination of ablation rates and thermal damage zones,” Lasers Surg. Med. 20(3), 242–247 (1997). [CrossRef] [PubMed]
  21. T. Wesendahl, P. Janknecht, B. Ott, and M. Frenz, “Erbium: YAG laser ablation of retinal tissue under perfluorodecaline: determination of laser-tissue interaction in pig eyes,” Invest. Ophthalmol. Vis. Sci. 41(2), 505–512 (2000). [PubMed]
  22. M. Contente, F. de Lima, R. Galo, J. Pécora, L. Bachmann, R. Palma-Dibb, and M. Borsatto, “Temperature rise during Er:YAG cavity preparation of primary enamel,” Lasers Med. Sci. 1, 1–5 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited