OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6703–6711

A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation

Mirko Ballarini, Francesca Frascella, Natascia De Leo, Serena Ricciardi, Paola Rivolo, Pietro Mandracci, Emanuele Enrico, Fabrizio Giorgis, Francesco Michelotti, and Emiliano Descrovi  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 6703-6711 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1588 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work we introduce the use of a patterned polymer-based surface functionalization of a one-dimensional photonic crystal (1DPC) for controlling the emission direction of fluorescent proteins (ptA) via coupling to a set of two Bloch Surface Waves (BSW). Each BSW dispersion branch relates to a micrometric region on the patterned 1DPC, characterized by a well defined chemical characteristic. We report on the enhanced and spatially selective excitation of fluorescent ptA, and on the spatially-resolved detection of polarized emitted radiation coupled to specific BSW modes. As a result, we provide an optical multiplexing technique for the angular separation of fluorescence radiated from micrometric regions having different surface properties, even in the case the emitting labels are spectrally identical. This working principle can be advantageously extended to a multi-step nanometric relief structure for self-referencing biosensing or frequency-multiplexed fluorescence detection.

© 2012 OSA

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(240.6690) Optics at surfaces : Surface waves
(310.2785) Thin films : Guided wave applications
(050.5298) Diffraction and gratings : Photonic crystals
(310.5448) Thin films : Polarization, other optical properties

ToC Category:
Photonic Crystals

Original Manuscript: January 24, 2012
Revised Manuscript: February 15, 2012
Manuscript Accepted: February 20, 2012
Published: March 7, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Mirko Ballarini, Francesca Frascella, Natascia De Leo, Serena Ricciardi, Paola Rivolo, Pietro Mandracci, Emanuele Enrico, Fabrizio Giorgis, Francesco Michelotti, and Emiliano Descrovi, "A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation," Opt. Express 20, 6703-6711 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer New York, 2006).
  2. A. Ozinskas, “Topics in Fluorescence Spectroscopy” in Principles of fluorescence Immunoassay, 1st ed. (Springer New York, 2006).
  3. B. Sciacca, F. Frascella, A. Venturello, P. Rivolo, E. Descrovi, F. Geobaldo, and F. Giorgis, “Doubly resonant porous silicon microcavities for enhanced detection of fluorescent organic molecules,” Sens. Actuators B 137(2), 467–470 (2009). [CrossRef]
  4. C. R. Taitt, G. P. Anderson, and F. S. Ligler, “Evanescent wave fluorescence biosensors,” Biosens. Bioelectron.20(12), 2470–2487 (2005). [CrossRef] [PubMed]
  5. D. J. Monk and D. R. Walt, “Optical fiber-based biosensors,” Anal. Bioanal. Chem.379(7-8), 931–945 (2004). [CrossRef] [PubMed]
  6. A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multicolor fluorescence enhancement from a photonics crystal surface,” Appl. Phys. Lett.97(12), 121108 (2010). [CrossRef] [PubMed]
  7. J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases3(3), FD12–FD22 (2008). [CrossRef] [PubMed]
  8. J. R. Lakowicz, I. Gryczynski, K. Aslan, and C. D. Geddes, “Metal-Enhanced fluorescence sensing,” in Fluorescence Sensors and Biosensors, R.B. Thompson, ed. (CRC Press, 2006), Chap. 7.
  9. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt.45(4), 661–699 (1998). [CrossRef]
  10. E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Multi-wavelength immunoassays using surface plasmon-coupled emission,” Biochem. Biophys. Res. Commun.313(3), 721–726 (2004). [CrossRef] [PubMed]
  11. R. Sai Satish, Y. Kostov, and G. Rao, “High-resolution surface plasmon coupled resonant filter for monitoring of fluorescence emission from molecular multiplexes,” Appl. Phys. Lett.94(22), 223113 (2009). [CrossRef]
  12. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics2(3), 161–164 (2008). [CrossRef]
  13. H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett.11(6), 2400–2406 (2011). [CrossRef] [PubMed]
  14. T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun.2, 481 (2011). [CrossRef] [PubMed]
  15. N. Ganesh, I. D. Block, P. C. Mathias, W. Zhang, E. Chow, V. Malyarchuk, and B. T. Cunningham, “Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors,” Opt. Express16(26), 21626–21640 (2008). [CrossRef] [PubMed]
  16. V. Chaudhery, C.-S. Huang, A. Pokhriyal, J. Polans, and B. T. Cunningham, “Spatially selective photonic crystal enhanced fluorescence and application to background reduction for biomolecule detection assays,” Opt. Express19(23), 23327–23340 (2011). [CrossRef] [PubMed]
  17. C. S. Huang, S. George, M. Lu, V. Chaudhery, R. Tan, R. C. Zangar, and B. T. Cunningham, “Application of photonic crystal enhanced fluorescence to cancer biomarker microarrays,” Anal. Chem.83(4), 1425–1430 (2011). [CrossRef] [PubMed]
  18. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett.32(2), 104 (1978). [CrossRef]
  19. F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys.12(2), 502–506 (2009). [CrossRef] [PubMed]
  20. Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010). [CrossRef] [PubMed]
  21. P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Actuators B 161(1), 1046–1052 (2012). [CrossRef]
  22. M. Liscidini, M. Galli, M. Shi, G. Dacarro, M. Patrini, D. Bajoni, and J. E. Sipe, “Strong modification of light emission from a dye monolayer via Bloch surface waves,” Opt. Lett.34(15), 2318–2320 (2009). [CrossRef] [PubMed]
  23. M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.99(4), 043302 (2011). [CrossRef]
  24. E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett.10(6), 2087–2091 (2010). [CrossRef] [PubMed]
  25. T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett.96(15), 151101 (2010). [CrossRef]
  26. T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B27(8), 1617–1625 (2010). [CrossRef]
  27. M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012). [CrossRef]
  28. S. Ricciardi, R. Castagna, S. M. Severino, I. Ferrante, F. Frascella, E. Celasco, P. Mandracci, I. Vallini, G. Mantero, C. F. Pirri, and P. Rivolo, “Surface functionalization by poly-acrylic acid plasma-polymerized films for microarray DNA diagnostics,” Surf. Coat. Tech.submitted.
  29. J. H. Peterman, P. J. Tarcha, V. P. Chu, and J. E. Butler, “The immunochemistry of sandwich-ELISAs. IV. The antigen capture capacity of antibody covalently attached to bromoacetyl surface-functionalized polystyrene,” J. Immunol. Methods111(2), 271–275 (1988). [CrossRef] [PubMed]
  30. K. G. Battiston, J. E. McBane, R. S. Labow, and J. Paul Santerre, “Differences in protein binding and cytokine release from monocytes on commercially sourced tissue culture polystyrene,” Acta Biomater.8(1), 89–98 (2012). [CrossRef] [PubMed]
  31. L. Li, G. Granet, J. P. Plumey, and J. Chandezon, “Some topics in extending the C method to multilayer gratings of different profiles,” Pure Appl. Opt.5(2), 141–156 (1996). [CrossRef]
  32. I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett.94(23), 231122 (2009). [CrossRef]
  33. V. N. Konopsky and E. V. Alieva, “A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index,” Biosens. Bioelectron.25(5), 1212–1216 (2010). [CrossRef] [PubMed]
  34. A. Wang, P. Gill, and A. Molnar, “Light field image sensors based on the Talbot effect,” Appl. Opt.48(31), 5897–5905 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited