OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6712–6719

Optical waveguides in TiO2 formed by He ion implantation

Zhuan-Fang Bi, Lei Wang, Xiu-Hong Liu, Shao-Mei Zhang, Ming-Ming Dong, Quan-Zhong Zhao, Xiang-Long Wu, and Ke-Ming Wang  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 6712-6719 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the formation and the optical properties of the planar and ridge optical waveguides in rutile TiO2 crystal by He+ ion implantation combined with micro-fabrication technologies. Planar optical waveguides in TiO2 are fabricated by high-energy (2.8 MeV) He+-ion implantation with a dose of 3 × 1016 ions/cm2 and triple low energies (450, 500, 550) keV He+-ion implantation with all fluences of 2 × 1016 ions/cm2 at room temperature. The guided modes were measured by a modal 2010 prism coupler at wavelength of 1539 nm. There are damage profiles in ion-implanted waveguides by Rutherford backscattering (RBS)/channeling measurements. The refractive-index profile of the 2.8 MeV He+-implanted waveguide was analyzed based on RCM (Reflected Calculation Method). Also ridge waveguides were fabricated by femtosecond laser ablation on 2.8 MeV ion implanted planar waveguide and Ar ion beam etching on the basis of triple keV ion implanted planar waveguide, separately. The loss of the ridge waveguide was estimated. The measured near-field intensity distributions of the planar and ridge modes are all shown.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(220.4610) Optical design and fabrication : Optical fabrication
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

Original Manuscript: January 18, 2012
Revised Manuscript: February 27, 2012
Manuscript Accepted: March 2, 2012
Published: March 7, 2012

Zhuan-Fang Bi, Lei Wang, Xiu-Hong Liu, Shao-Mei Zhang, Ming-Ming Dong, Quan-Zhong Zhao, Xiang-Long Wu, and Ke-Ming Wang, "Optical waveguides in TiO2 formed by He ion implantation," Opt. Express 20, 6712-6719 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Sauvage, F. Di Fonzo, A. Li Bassi, C. S. Casari, V. Russo, G. Divitini, C. Ducati, C. E. Bottani, P. Comte, and M. Graetzel, “Hierarchical TiO2 photoanode for dye-sensitized solar cells,” Nano Lett.10(7), 2562–2567 (2010). [CrossRef] [PubMed]
  2. B. Peng, G. Jungmann, C. Jäger, D. Haarer, H. W. Schmidt, and M. Thelakkat, “Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells,” Coord. Chem. Rev.248(13-14), 1479–1489 (2004). [CrossRef]
  3. Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, and X. Zhu, “Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand,” Adv. Mater.20(5), 1044–1049 (2008). [CrossRef]
  4. A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep.63(12), 515–582 (2008). [CrossRef]
  5. Z. X. Chen, W. X. Wang, Y. Takao, T. Matsubara, and L. M. Ren, “Microstructure and shear fracture characteristics of porous anodic TiO2 layer before and after hot water treatment,” Appl. Surf. Sci.257(16), 7254–7262 (2011). [CrossRef]
  6. T. C. Jennifer, D. B. B. Jonathan, B. D. Parag, B. B. Ian, C. E. Christopher, M. Eric, and L. Marko, “Integrated TiO2 resonators for visible photonics,” Opt. Lett.37(4), 539–541 (2011).
  7. J. D. B. Bradley, C. C. Evans, F. Parsy, K. C. Phillips, R. Senaratne, E. Marti, and E. Mazur, “Low-loss TiO2 planar waveguides for nanophotonic applications,” in Proceeding of IEEE Photonics Society Annual Meeting (IEEE, 2010), pp. 313–314.
  8. M. Foster, K. Moll, and A. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express12(13), 2880–2887 (2004). [CrossRef] [PubMed]
  9. R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express14(20), 9408–9414 (2006). [CrossRef] [PubMed]
  10. H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films517(19), 5601–5604 (2009). [CrossRef]
  11. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B67(2), 131–150 (1998). [CrossRef]
  12. M. M. Haruna, Y. Murata, and H. Nishihara, “Laser-beam direct writing of TiO2 channels for fabrication of Ti:LiNbO3 waveguides,” Jpn. J. Appl. Phys.31(Part 1, No. 5B), 1593–1596 (1992). [CrossRef]
  13. K. S. Park, E. K. Seo, Y. R. Do, K. Kim, and M. M. Sung, “Light stamping lithography: microcontact printing without inks,” J. Am. Chem. Soc.128(3), 858–865 (2006). [CrossRef] [PubMed]
  14. L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A18(6), 2619–2645 (2000). [CrossRef]
  15. K. M. Yoon, K. Y. Yang, H. Lee, and H. S. Kim, “Formation of TiO2 nanopattern using reverse imprinting and sol-gel method,” J. Vac. Sci. Technol. B27(6), 2810–2813 (2009). [CrossRef]
  16. B. Liu and S. T. Ho, “Sub-100 nm nanolithography and pattern transfer on compound semiconductor using sol-gel-derived TiO2 resist,” J. Electrochem. Soc.155(5), P57–P60 (2008). [CrossRef]
  17. W. Wesch, T. Opfermann, F. Schrempel, and T. Höche, “Track formation in KTiOPO4 by MeV implantation of light ions,” Nucl. Instrum. Methods Phys. Res. B175-177, 88–92 (2001). [CrossRef]
  18. W. Wesch and G. Götz, “Influence of ion implantation on the optical properties of silicon,” Radiat. Eff.49(1-3), 137–140 (1980). [CrossRef]
  19. T. Steinbach, F. Schrempel, T. Gischkat, and W. Wesch, “Influence of ion energy and ion species on ion channeling in LiNbO3,” Phys. Rev. B78(18), 184106 (2008). [CrossRef]
  20. F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci.33(3-4), 165–182 (2008). [CrossRef]
  21. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007). [CrossRef]
  22. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, 1994).
  23. P. J. Chandler, L. Zhang, and P. D. Townsend, “Double waveguide in LiNbO3 by ion implantation,” Appl. Phys. Lett.55(17), 1710–1712 (1989). [CrossRef]
  24. V. V. Atuchin, C. C. Ziling, I. Savatinova, M. N. Armenise, and V. M. N. Passaro, “Waveguide formation mechanism generated by double doping in ferroelectric crystals,” J. Appl. Phys.78(12), 6936–6939 (1995). [CrossRef]
  25. V. V. Atuchin, “Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides,” Nucl. Instrum. Methods Phys. Res. B168(4), 498–502 (2000). [CrossRef]
  26. J. M. White and P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt.15(1), 151–155 (1976). [CrossRef] [PubMed]
  27. X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun.281(6), 1529–1533 (2008). [CrossRef]
  28. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.)33(2), 127–143 (1986). [CrossRef]
  29. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys.106(8), 081101–081129 (2009). [CrossRef]
  30. D. S. Hines and K. E. Williams, “Patterning of wave guides in LiNbO3 using ion beam etching and reactive ion beam etching,” in The 10th Canadian Semiconductor Technology Conference (Ottawa, 2002), pp. 1072–1075.
  31. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  32. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev.3(6), 535–544 (2009). [CrossRef]
  33. H. Hu, F. Lu, F. Chen, F. X. Wang, J. H. Zhang, X. D. Liu, K. M. Wang, and B. R. Shi, “Optical waveguide formation by MeV H+ implanted into LiNbO3 crystal,” Opt. Commun.177(1-6), 189–193 (2000). [CrossRef]
  34. J. Ziegler, “Computer code SRIM version,” http://www.srim.org .
  35. R. D. Innocenti, S Reidt, A Guarino, D Rezzonico, G Poberaj, and P Gunter, “Micromachining of ridge optical waveguides on top of He+-implanted beta-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys.100(11), 113121 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited