OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6746–6760

Broadband bandgap guidance and mode filtering in radially hybrid photonic crystal fiber

Yacoub Ould-Agha, Aurelie Bétourné, Olivier Vanvincq, Géraud Bouwmans, and Yves Quiquempois  »View Author Affiliations


Optics Express, Vol. 20, Issue 6, pp. 6746-6760 (2012)
http://dx.doi.org/10.1364/OE.20.006746


View Full Text Article

Enhanced HTML    Acrobat PDF (1397 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hybrid Photonic Crystal Fibers with a first ring of high index inclusions are studied and compared to both standard air-hole fibers and all solid photonic bandgap fibers. In such new fibers a bandgap-like core mode exists over a wide spectral range and exhibits confinement losses ten orders of magnitude smaller than those of the corresponding all-solid fiber. This particular fiber supports also a core mode guided by modified total internal reflection at long enough wavelengths. The origin and properties of these two kinds of modes are discussed in details. Such a design can also act as a mode filter (as compared to the standard air-hole structure) and could also be used to ease phase matching conditions for nonlinear optics.

© 2012 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 15, 2011
Revised Manuscript: February 11, 2012
Manuscript Accepted: February 25, 2012
Published: March 8, 2012

Citation
Yacoub Ould-Agha, Aurelie Bétourné, Olivier Vanvincq, Géraud Bouwmans, and Yves Quiquempois, "Broadband bandgap guidance and mode filtering in radially hybrid photonic crystal fiber," Opt. Express 20, 6746-6760 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6746


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Knight, “Photonic crystal fibres,” Nature (London)424, 857–851 (2003). [CrossRef]
  2. A. Bjarklev, J. Broeng, and A. Sanchez Bjarklev, Photonic crystal fibres (Kluwer Academic Publishers, 2003). [CrossRef]
  3. P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol.24, 4729–4749 (2006). [CrossRef]
  4. T. A. Birks, J. C. Knight, and P. St. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett.22, 961–963 (1997). [CrossRef] [PubMed]
  5. G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett.28, 989–991 (1997). [CrossRef]
  6. J. M. Dudley and J. R. Taylork, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010). [CrossRef]
  7. G. Bouwmans, R. M. Percival, W. J. Wadsworth, J. C. Knight, and P. St. J. Russel, “High-power Er:Yb fiber laser with very high numerical aperture pump-cladding waveguide,” Appl. Phys. Lett.83, 817–818 (2003). [CrossRef]
  8. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. Russel, “All-solid photonic bandgap fiber,” Opt. Lett.29, 2369–2371 (2004). [CrossRef] [PubMed]
  9. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express13, 8452–8459 (2005). [CrossRef] [PubMed]
  10. B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and bragg fiber,” IEEE Photon. Technol. Lett.20, 581–583 (2008). [CrossRef]
  11. A. Isomaki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express14, 9238–9243 (2006). [CrossRef] [PubMed]
  12. A. Wang, A. K. George, and J. C. Knight, “Three-level neodymium fiber laser incorporating photonic bandgap fiber,” Opt. Lett.31, 1388–1390 (2006). [CrossRef] [PubMed]
  13. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett.92, 061113 (2008). [CrossRef]
  14. C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngso, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda, “167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178nm,” Opt. Express18, 16345–16352 (2010). [CrossRef] [PubMed]
  15. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27, 1592–1594 (2002). [CrossRef]
  16. G. Renversez, P. Boyer, and A. Sagrini, “Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling,” Opt. Express14, 5682–5687 (2006). [CrossRef] [PubMed]
  17. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318, 1118–1121 (2007). [CrossRef] [PubMed]
  18. A. Cerqueira, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express14, 926–931 (2006). [CrossRef]
  19. L. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express15, 15637–15647 (2006). [CrossRef]
  20. A. Cerqueira, C. M. B. Cordeiro, F. Biancalana, P. J. Roberts, H. E. Hernandez-Figueroa, and C. H. Brito Cruz, “Nonlinear interaction between two different photonic bandgaps of a hybrid photonic crystal fiber,” Opt. Lett.33, 2080–2082 (2008). [CrossRef]
  21. A. Cerqueira, D. G. Lona, I. de Oliveira, H. E. Hernandez-Figueroa, and H. L. Fragnito, “Broadband single-polarization guidance in hybrid photonic crystal fibers,” Opt. Lett.36, 133–135 (2011). [CrossRef]
  22. J. Sun and C. C. Chan, “Hybrid guiding in liquid-crystal photonic crystal fibers,” J. Opt. Soc. Am. B24, 2640–2646 (2007). [CrossRef]
  23. M. Perrin, Y. Quiquempois, G. Bouwmans, and M. Douay, “Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes,” Opt. Express15, 13783–13795 (2007). [CrossRef] [PubMed]
  24. A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, and M. Douay, “Improvements of solid-core photonic bandgap fibers by means of interstitial air holes,” Opt. Lett.32, 1719–1721 (2007). [CrossRef] [PubMed]
  25. A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, “Control of super-continuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers,” Opt. Lett.34, 3083–3085 (2009). [CrossRef] [PubMed]
  26. J. Lægsgaard and A. Bjarklev, “Doped photonic bandgap fibers for short-wavelength nonlinear devices,” Opt. Lett.28, 783–785 (2003). [CrossRef] [PubMed]
  27. A. Bétourné, Y. Quiquempois, G. Bouwmans, and M. Douay, “Design of a photonic crystal fiber for phase-matched frequency doubling or tripling,” Opt. Express16, 14255–14262 (2008). [CrossRef] [PubMed]
  28. O. Vanvincq, A. Kudlinski, A. Betourne, Y. Quiquempois, and G. Bouwmans, “Extreme deceleration of the soliton self-frequency shift by the third-order dispersion in solid-core photonic bandgap fibers,” J. Opt. Soc. Am. B27, 2328–2335 (2010). [CrossRef]
  29. Y. Ould-Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes : an application to microstructured optical fibres,” Int. J. Computation Math. Elec. Electron. Engineer.27, 95–109 (2008). [CrossRef]
  30. G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptative curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B71, 195108 (2005). [CrossRef]
  31. T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express14, 9483–9490 (2006). [CrossRef] [PubMed]
  32. J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A: Pure Appl. Opt.6, 798–804 (2004). [CrossRef]
  33. K. Otsuka, “Self-induced phase turbulence and chaotic itinerancy in coupled laser systems,” Phys. Rev. Lett.65, 329–332 (1990). [CrossRef] [PubMed]
  34. H. S. Huang and H. C. Chang, “Guided vector modes of equilateral three-core fibres,” Electron. Lett.25, 55–56 (1988). [CrossRef]
  35. L. Jin, Z. Wang, Y. Liu, G. Kai, and X. Dong, “Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers,” Opt. Express16, 21119–21131 (2008). [CrossRef] [PubMed]
  36. C. Zhao, R. Peng, Z. Tang, Y. Ye, L. Shen, and D. Fan, “Model fields and bending analyses of three-layer large flattened mode fibers,” Opt. Commun.266, 175–180 (2006). [CrossRef]
  37. H. C. Park, I. K. Hwang, D. I. Yeom, and B. Y. Kim, “Analyses of cladding modes in photonic crystal fiber,” Opt. Express15, 15154–15160 (2007). [CrossRef] [PubMed]
  38. C. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, “Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index,” Opt. Express16, 9645–9653 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited