OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6816–6824

Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice

Jing Ma, Luis Javier Martínez, and Michelle L. Povinelli  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 6816-6824 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1228 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel photonic crystal lattice is proposed for trapping a two-dimensional array of particles. The lattice is created by introducing a rectangular slot in each unit cell of the Suzuki-Phase lattice to enhance the light confinement of guided resonance modes. Large quality factors on the order of 105 are predicted in the lattice. A significant decrease of the optical power required for optical trapping can be achieved compared to our previous design.

© 2012 OSA

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: January 24, 2012
Revised Manuscript: February 24, 2012
Manuscript Accepted: February 25, 2012
Published: March 8, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Jing Ma, Luis Javier Martínez, and Michelle L. Povinelli, "Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice," Opt. Express 20, 6816-6824 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24, 156–159 (1970). [CrossRef]
  2. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75, 2787–2809 (2004). [CrossRef]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature424, 810– 816 (2003). [CrossRef] [PubMed]
  4. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J.81, 767–784 (2001). [CrossRef] [PubMed]
  5. D. Erickson, X. Serey, Y.-F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip11, 995–1009 (2011). [CrossRef] [PubMed]
  6. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5, 349–356 (2011). [CrossRef]
  7. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457, 71–75 (2009). [CrossRef] [PubMed]
  8. M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett.89, 253114 (2006). [CrossRef]
  9. A. Rahmani and P. C. Chaumet, “Optical trapping near a photonic crystal,” Opt. Express14, 6353–6358 (2006). [CrossRef] [PubMed]
  10. S. Lin, J. Hu, L. Kimerling, and K. Crozier, “Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection,” Opt. Lett.34, 3451–3453 (2009). [CrossRef] [PubMed]
  11. X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnol.21, 305202 (2010). [CrossRef]
  12. C. A. Mejía, A. Dutt, and M. L. Povinelli, “Light-assisted templated self assembly using photonic crystal slabs,” Opt. Express19, 11422–11428 (2011). [CrossRef] [PubMed]
  13. A. R. Alija, L. J. Martínez, P. A. Postigo, J. Sánchez-Dehesa, M. Galli, A. Politi, M. Patrini, L. C. Andreani, C. Seassal, and P. Viktorovitch, “Theoretical and experimental study of the Suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy,” Opt. Express15, 704–713 (2007). [CrossRef] [PubMed]
  14. C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. R. Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane,” J. Appl. Phys.93, 23–31 (2003). [CrossRef]
  15. A. Taflove, Computational electrodynamics: the finite-difference time-domain method (Artech House, Boston, USA, 1995).
  16. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20, 569–572 (2003). [CrossRef]
  17. T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B63, 125107 (2001). [CrossRef]
  18. M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B65, 113111 (2002). [CrossRef]
  19. L. J. Martínez, A. R. Alija, P. A. Postigo, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, and P. Viktorovitch, “Effect of implementation of a Bragg reflector in the photonic band structure of the suzuki-phase photonic crystal lattice,” Opt. Express16, 8509–8518 (2008). [CrossRef] [PubMed]
  20. J. D. Joannopoulos, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, New Jersey, USA, 1995).
  21. X. Letartre, J. Mouette, J. Leclercq, P. Rojo Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,” J. Lightw. Technol.21, 1691 – 1699 (2003). [CrossRef]
  22. L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, and P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express17, 15043–15051 (2009). [CrossRef] [PubMed]
  23. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29, 1209–1211 (2004). [CrossRef] [PubMed]
  24. T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express16, 13809–13817 (2008). [CrossRef] [PubMed]
  25. M. E. Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express18, 22702–22714 (2010). [CrossRef] [PubMed]
  26. J. D. Jackson, Classical Electrodynamics (John Wiley & and Songs, New York, USA, 1975).
  27. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11, 288–290 (1986). [CrossRef] [PubMed]
  28. S. Kita, S. Hachuda, K. Nozaki, and T. Baba, “Nanoslot laser,” Appl. Phys. Lett.97, 161108 (2010). [CrossRef]
  29. S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express19, 17683–17690 (2011). [CrossRef] [PubMed]
  30. B. B. Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. D. Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett.88, 081113 (2006). [CrossRef]
  31. L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, and P. Viktorovitch, “Slow bloch mode confinement in 2D photonic crystals for surface operating devices,” Opt. Express16, 3136–3145 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited