OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6835–6843

Photo-configurable embossed liquid crystal alignment layer with high azimuthal anchoring strength

Dowon Ahn, Yong-Cheol Jeong, Manhee Han, Kuk Young Cho, Seungsup Lee, and Jung-Ki Park  »View Author Affiliations


Optics Express, Vol. 20, Issue 6, pp. 6835-6843 (2012)
http://dx.doi.org/10.1364/OE.20.006835


View Full Text Article

Enhanced HTML    Acrobat PDF (1222 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Herein we describe a photo-alignment layer of improved azimuthal anchoring energy comparable to conventional rubbing method. In order to address the inherent low anchoring stability of photo-alignment layer, we applied embossing technique to conventional photosensitive polymer film, based on the cinnamoyl photoreactive groups, to introduce physical micro-groove effect for additional anchoring energy. From this, 2.5 × 10−4 J/m2 of azimuthal anchoring energy was achieved, which is considered as synergistic effect from both photoinduced chemical interaction and physical microgroove alignment. In this study, we conducted systematic study on change in anchoring energy as a function of both aspect ratio of embossed pattern and UV exposure dose. We also demonstrated fabrication of sophisticated multi-domain structure of LC cells and discussed theoretical interpretation through LC simulation.

© 2012 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

History
Original Manuscript: January 3, 2012
Revised Manuscript: January 28, 2012
Manuscript Accepted: February 2, 2012
Published: March 9, 2012

Citation
Dowon Ahn, Yong-Cheol Jeong, Manhee Han, Kuk Young Cho, Seungsup Lee, and Jung-Ki Park, "Photo-configurable embossed liquid crystal alignment layer with high azimuthal anchoring strength," Opt. Express 20, 6835-6843 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6835


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. S. Sridharamurthy, K. D. Cadwell, N. L. Abbott, and H. Jiang, “A microstructure for the detection of vapor-phase analytes based on orientational transitions of liquid crystals,” Smart Mater. Struct.17(1), 012001 (2008). [CrossRef]
  2. J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals,” Science302(5653), 2094–2097 (2003). [CrossRef] [PubMed]
  3. R. R. Shah and N. L. Abbott, “Orientational transitions of liquid crystals driven by binding of organoamines to carboxylic acids presented at surfaces with nanometer-scale topography,” Langmuir19(2), 275–284 (2003). [CrossRef]
  4. L. Wei, J. Weirich, T. T. Alkeskjold, and A. Bjarklev, “On-chip tunable long-period grating devices based on liquid crystal photonic bandgap fibers,” Opt. Lett.34(24), 3818–3820 (2009). [CrossRef] [PubMed]
  5. L. Z. Ruan, J. R. Sambles, and I. W. Stewart, “Self-organized periodic photonic structure in a nonchiral liquid crystal,” Phys. Rev. Lett.91(3), 033901 (2003). [CrossRef] [PubMed]
  6. M. O’Neill and S. M. Kelly, “Photoinduced surface alignment for liquid crystal displays,” J. Phys. D Appl. Phys.33(10), R67–R84 (2000). [CrossRef]
  7. J. van Haaren, “Wiping out dirty displays,” Nature411(6833), 29–30 (2001). [CrossRef] [PubMed]
  8. M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature381(6579), 212–215 (1996). [CrossRef]
  9. J. H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420(6912), 159–162 (2002). [CrossRef] [PubMed]
  10. P. Prompinit, A. S. Achalkumar, J. P. Bramble, R. J. Bushby, C. Wälti, and S. D. Evans, “Controlling liquid crystal alignment using photocleavable cyanobiphenyl self-assembled monolayers,” ACS Appl. Mater. Interfaces2(12), 3686–3692 (2010). [CrossRef] [PubMed]
  11. H. K. Bisoyi and S. Kumar, “Liquid-crystal nanoscience: an emerging avenue of soft self-assembly,” Chem. Soc. Rev.40(1), 306–319 (2010). [CrossRef] [PubMed]
  12. H. Qi and T. Hegmann, “Multiple alignment modes for nematic liquid crystals doped with alkylthiol-capped gold nanoparticles,” ACS Appl. Mater. Interfaces1(8), 1731–1738 (2009). [CrossRef] [PubMed]
  13. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonic News21(3), 40–45 (2010). [CrossRef]
  14. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys.31(Part 1, No. 7), 2155–2164 (1992). [CrossRef]
  15. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature411(6833), 56–59 (2001). [CrossRef] [PubMed]
  16. W. Schenck, D. H. Ko, and E. Samulski, “Liquid crystal alignment on polymer line gratings,” J. Appl. Phys.109(6), 064301 (2011). [CrossRef]
  17. S. Park, C. Padeste, H. Schift, J. Gobrecht, and T. Scharf, “Chemical nanopatterns via nanoimprint lithography for simultaneous control over azimuthal and polar alignment of liquid crystals,” Adv. Mater. (Deerfield Beach Fla.)17(11), 1398–1401 (2005). [CrossRef]
  18. D. Suh, S. J. Choi, and H. H. Lee, “Rigiflex lithography for nanostructure transfer,” Adv. Mater. (Deerfield Beach Fla.)17(12), 1554–1560 (2005). [CrossRef]
  19. D. Ahn, Y. C. Jeong, S. Lee, J. Lee, Y. Heo, and J. K. Park, “Control of liquid crystal pretilt angles by using organic/inorganic hybrid interpenetrating networks,” Opt. Express17(19), 16603–16612 (2009). [CrossRef] [PubMed]
  20. M. Schadt and H. Seiberle, “Optical patterning of multidomain LCDs,” J. Soc. Inf. Disp.5(4), 367–370 (1997). [CrossRef]
  21. Y. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed.37(5), 550–575 (1998). [CrossRef]
  22. D. Ahn, Y. C. Jeong, S. Lee, and J. K. Park, “UV-driven in-plane rotation of a liquid crystal director in poly(vinyl cinnamate) films having microscale grooves,” Opt. Lett.35(18), 3141–3143 (2010). [CrossRef] [PubMed]
  23. D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett.28(26), 1683–1686 (1972). [CrossRef]
  24. G. P. Bryan-Brown and I. C. Sage, “Photoinduced ordering and alignment properties of polyvinylcinnamates,” Liq. Cryst.20(6), 825–829 (1996). [CrossRef]
  25. J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science292(5525), 2299–2302 (2001). [CrossRef] [PubMed]
  26. R. Yamaguchi, Y. Goto, and S. Sato, “A novel patterning method of liquid crystal alignment by azimuthal anchoring control,” Jpn. J. Appl. Phys.41(Part 2, No. 8A), L889–L891 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited