OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 6887–6896

Two-dimensional modeling of transient gain gratings in saturable gain media

Robert Elsner, Roland Ullmann, Axel Heuer, Ralf Menzel, and Martin Ostermeyer  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 6887-6896 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1078 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A transient two-dimensional model describing degenerate four-wave mixing inside saturable gain media is presented. The new model is compared to existing one-dimensional models with their qualitative results confirmed. Large quantitative differences with respect to peak reflectivity and optimum pump fluence are observed. Furthermore, the influence of the beam focus size, the transverse position and the crossing angle on the reflectivity of the grating is investigated using the improved model. It is demonstrated that the phase conjugate reflectivity depends sensitively on the transverse features of the interacting beams with a transverse shift in the position of the pump beams yielding a threefold improvement in reflectivity.

© 2012 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(090.7330) Holography : Volume gratings
(140.3540) Lasers and laser optics : Lasers, Q-switched
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.2055) Nonlinear optics : Dynamic gratings
(140.3535) Lasers and laser optics : Lasers, phase conjugate

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 7, 2011
Revised Manuscript: December 14, 2011
Manuscript Accepted: December 15, 2011
Published: March 12, 2012

Robert Elsner, Roland Ullmann, Axel Heuer, Ralf Menzel, and Martin Ostermeyer, "Two-dimensional modeling of transient gain gratings in saturable gain media," Opt. Express 20, 6887-6896 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. P. M. Green, S. Camacho-Lopez, M. J. Damzen, “Experimental investigation of vector phase conjugation in Nd3+:YAG,” Opt. Lett. 21, 1214–1216 (1996). [CrossRef] [PubMed]
  2. R. P. M. Green, D. Udaiyan, G. J. Crofts, D. H. Kim, M. J. Damzen, “Holographic laser oscillator which adaptively corrects for polarization and phase distortions,” Phys. Rev. Lett. 77, 3533–3536 (1996). [CrossRef] [PubMed]
  3. P. Sillard, A. Brignon, J. Huignard, “Gain-grating analysis of a self-starting self-pumped phase-conjugate Nd:YAG loop resonator,” IEEE J. Quantum Electron. 34, 465–472 (1998). [CrossRef]
  4. A. Brignon, J. Huignard, “Transient analysis of degenerate four-wave mixing with orthogonally polarized pump beams in a saturable Nd:YAG amplifier,” IEEE J. Quantum Electron. 30, 2203–2210 (1994). [CrossRef]
  5. M. Damzen, R. Green, G. Crofts, “Spatial characteristics of a laser oscillator formed by optically-written holographic gain-grating,” Opt. Commun. 110, 152–156 (1994). [CrossRef]
  6. G. Smith, M. J. Damzen, “Quasi-CW diode-pumped self-starting adaptive laser with self-Q-switched output,” Opt. Express 15, 6458–6463 (2007). [CrossRef] [PubMed]
  7. B. A. Thompson, A. Minassian, M. J. Damzen, “Operation of a 33-W, continuous-wave, self-adaptive, solid-state laser oscillator,” J. Opt. Soc. B 20, 857–862 (2003). [CrossRef]
  8. S. Lam, M. Damzen, “Self-adaptive Nd:YLF holographic laser with selectable wavelength operation,” Appl. Phys. B. 76, 237–240 (2003). [CrossRef]
  9. M. J. Damzen, Y. Matsumoto, G. J. Crofts, R. P. M. Green, “Bragg-selectivity of a volume gain grating,” Opt. Commun. 123, 182–188 (1996). [CrossRef]
  10. A. Minassian, G. Crofts, M. Damzen, “Spectral filtering of gain gratings and spectral evolution of holographic laser oscillators,” IEEE J. Quantum Electron. 36, 802–809 (2000). [CrossRef]
  11. P. C. Shardlow, M. J. Damzen, “Phase conjugate self-organized coherent beam combination: a passive technique for laser power scaling,” Opt. Lett. 35, 1082–1084 (2010). [CrossRef] [PubMed]
  12. K. S. Syed, G. J. Crofts, M. J. Damzen, “Transient modelling of a self-starting holographic laser oscillator,” Opt. Commun. 146, 181–185 (1998). [CrossRef]
  13. R. Green, G. Crofts, M. Damzen, “Phase conjugate reflectivity and diffraction efficiency of gain gratings in Nd:YAG,” Opt. Commun. 102, 288–292 (1993). [CrossRef]
  14. G. J. Crofts, M. J. Damzen, “Numerical modelling of continuous-wave holographic laser oscillators,” Opt. Commun. 175, 397–408 (2000). [CrossRef]
  15. M. J. Damzen, R. P. M. Green, G. J. Crofts, “Reflectivity and oscillation conditions of a gain medium in a self-conjugating loop geometry,” Opt. Lett. 19, 34–36 (1994). [CrossRef] [PubMed]
  16. K. Syed, R. Green, G. Crofts, M. Damzen, “Transient modeling of pulsed phase conjugation experiments in a saturable Nd:YAG amplifier,” Opt. Commun. 112, 175–180 (1994). [CrossRef]
  17. K. S. Syed, G. J. Crofts, R. P. M. Green, M. J. Damzen, “Vectorial phase conjugation via four-wave mixing in isotropic saturable-gain media,” J. Opt. Soc. B 14, 2067–2078 (1997). [CrossRef]
  18. M. Chi, J. Huignard, P. M. Petersen, “A general theory of two-wave mixing in nonlinear media,” J. Opt. Soc. B 26, 1578–1584 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited