OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 6932–6943

Depth-dependent cerebral hemodynamic responses following Direct Cortical Electrical Stimulation (DCES) revealed by in vivo dual-optical imaging techniques

Seungduk Lee, Dalkwon Koh, Areum Jo, Hae Young Lim, Young-Jin Jung, Choong-Ki Kim, Youngwook Seo, Chang-Hwan Im, Beop-Min Kim, and Minah Suh  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 6932-6943 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1656 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We studied depth-dependent cerebral hemodynamic responses of rat brain following direct cortical electrical stimulation (DCES) in vivo with optical recording of intrinsic signal (ORIS) and near-infrared spectroscopy (NIRS). ORIS is used to visualize the immediate hemodynamic changes in cortical areas following the stimulation, whereas NIRS measures the hemodynamic changes originating from subcortical areas. We found strong hemodynamic changes in relation to DCES both in ORIS and NIRS data. In particular, the signals originating from cortical areas exhibited a tri-phasic response, whereas those originating from subcortical regions exhibited multi-phasic responses. In addition, NIRS signals from two different sets of source-detector separation were compared and analyzed to investigate the causality of perfusion, which demonstrated downstream propagation, indicating that the upper brain region reacted faster than the deep region.

© 2012 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 28, 2011
Revised Manuscript: February 26, 2012
Manuscript Accepted: March 5, 2012
Published: March 12, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Seungduk Lee, Dalkwon Koh, Areum Jo, Hae Young Lim, Young-Jin Jung, Choong-Ki Kim, Youngwook Seo, Chang-Hwan Im, Beop-Min Kim, and Minah Suh, "Depth-dependent cerebral hemodynamic responses following Direct Cortical Electrical Stimulation (DCES) revealed by in vivo dual-optical imaging techniques," Opt. Express 20, 6932-6943 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986). [CrossRef] [PubMed]
  2. A. Zepeda, C. Arias, F. Sengpiel, “Optical imaging of intrinsic signals: recent developments in the methodology and its applications,” J. Neurosci. Methods 136(1), 1–21 (2004). [CrossRef] [PubMed]
  3. B. R. Chen, M. B. Bouchard, A. F. McCaslin, S. A. Burgess, E. M. Hillman, “High-speed vascular dynamics of the hemodynamic response,” Neuroimage 54(2), 1021–1030 (2011). [CrossRef] [PubMed]
  4. A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39(2), 353–359 (2003). [CrossRef] [PubMed]
  5. A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, A. M. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. U.S.A. 102(10), 3822–3827 (2005). [CrossRef] [PubMed]
  6. R. D. Frostig, E. E. Lieke, D. Y. Ts’o, A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990). [CrossRef] [PubMed]
  7. H. Gurden, N. Uchida, Z. F. Mainen, “Sensory-evoked intrinsic optical signals in the olfactory bulb are coupled to glutamate release and uptake,” Neuron 52(2), 335–345 (2006). [CrossRef] [PubMed]
  8. Y. B. Sirotin, E. M. Hillman, C. Bordier, A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009). [CrossRef] [PubMed]
  9. J. Sepulcre, J. C. Masdeu, M. A. Pastor, J. Goñi, C. Barbosa, B. Bejarano, P. Villoslada, “Brain pathways of verbal working memory: a lesion-function correlation study,” Neuroimage 47(2), 773–778 (2009). [CrossRef] [PubMed]
  10. R. Sitaram, H. H. Zhang, C. T. Guan, M. Thulasidas, Y. Hoshi, A. Ishikawa, K. Shimizu, N. Birbaumer, “Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface,” Neuroimage 34(4), 1416–1427 (2007). [CrossRef] [PubMed]
  11. C. H. Im, Y. J. Jung, S. Lee, D. Koh, D. W. Kim, B. M. Kim, “Estimation of directional coupling between cortical areas using Near-Infrared Spectroscopy (NIRS),” Opt. Express 18(6), 5730–5739 (2010). [CrossRef] [PubMed]
  12. S. Lee, M. Lee, D. Koh, B. M. Kim, J. H. Choi, “Cerebral hemodynamic responses to seizure in the mouse brain: simultaneous near-infrared spectroscopy-electroencephalography study,” J. Biomed. Opt. 15(3), 037010 (2010). [CrossRef] [PubMed]
  13. N. Roche-Labarbe, B. Zaaimi, M. Mahmoudzadeh, V. Osharina, A. Wallois, A. Nehlig, R. Grebe, F. Wallois, “NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in a genetic model of absence epilepsy: the GAERS,” Epilepsia 51(8), 1374–1384 (2010). [CrossRef] [PubMed]
  14. J. W. Scannell, G. A. P. C. Burns, C. C. Hilgetag, M. A. O’Neil, M. P. Young, “The connectional organization of the cortico-thalamic system of the cat,” Cereb. Cortex 9(3), 277–299 (1999). [CrossRef] [PubMed]
  15. H. J. Alitto, W. M. Usrey, “Corticothalamic feedback and sensory processing,” Curr. Opin. Neurobiol. 13(4), 440–445 (2003). [CrossRef] [PubMed]
  16. H. Blumenfeld, D. A. McCormick, “Corticothalamic inputs control the pattern of activity generated in thalamocortical networks,” J. Neurosci. 20(13), 5153–5162 (2000). [PubMed]
  17. J. A. Buckwalter, J. Parvizi, R. J. Morecraft, G. W. van Hoesen, “Thalamic projections to the posteromedial cortex in the macaque,” J. Comp. Neurol. 507(5), 1709–1733 (2008). [CrossRef] [PubMed]
  18. P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. Liu, D. A. Boas, R. B. Buxton, A. M. Dale, A. Devor, “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 15246–15251 (2010). [CrossRef] [PubMed]
  19. F. Zhao, P. Wang, K. Hendrich, K. Ugurbil, S. G. Kim, “Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation,” Neuroimage 30(4), 1149–1160 (2006). [CrossRef] [PubMed]
  20. L. Seungduk, J. L. Hyun, I. Changkyun, S. Hyung-Cheul, K. Dalkwon, K. Beop-Min, “Simultaneous Measurement of Hemodynamic and Neuronal Activities Using Near-infrared Spectroscopy and Single-unit Recording,” J Korean Phys Soc 58(6), 1697–1702 (2011). [CrossRef]
  21. S. Lee, D. Koh, K. Kwon, H. J. Lee, Y. Lang, H. C. Shin, B. M. Kim, “Hemodynamic responses of rat brain measured by near-infrared spectroscopy during various whisker stimulations,” J Opt Soc Korea 13(1), 166–170 (2009). [CrossRef]
  22. M. S. Patterson, S. Andersson-Engels, B. C. Wilson, E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34(1), 22–30 (1995). [CrossRef] [PubMed]
  23. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 6th ed. (Academic Press/Elsevier, Amsterdam Boston, 2007).
  24. B. Champagne, M. Eizenman, S. Pasupathy, “Exact maximum likelihood time delay estimation for short observation intervals,” IEEE Trans. Signal Process. 39(6), 1245–1257 (1991). [CrossRef]
  25. C. Knapp, G. Carter, “The generalized correlation method for estimation of time delay,” IEEE Trans. Acoust Speech 24(4), 320–327 (1976). [CrossRef]
  26. A. Piersol, “Time delay estimation using phase data,” IEEE Trans. Acoust Speech 29(3), 471–477 (1981). [CrossRef]
  27. M. Azaria, D. Hertz, “Time delay estimation by generalized cross correlation methods,” IEEE Trans. Acoust Speech 32(2), 280–285 (1984). [CrossRef]
  28. J. Benesty, J. Chen, Y. Huang, “Time-delay estimation via linear interpolation and cross correlation,” IEEE Trans. Speech Audi P 12(5), 509–519 (2004). [CrossRef]
  29. M. Kamiński, M. Z. Ding, W. A. Truccolo, S. L. Bressler, “Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance,” Biol. Cybern. 85(2), 145–157 (2001). [CrossRef] [PubMed]
  30. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, J. D. Farmer, “Testing for nonlinearity in time-series - the method of surrogate data,” Physica D 58(1-4), 77–94 (1992). [CrossRef]
  31. T. Schreiber, A. Schmitz, “Surrogate time series,” Physica D 142(3-4), 346–382 (2000). [CrossRef]
  32. J. Neter, W. Wasserman, and M. H. Kutner, Applied Linear Regression Models, 2nd ed. (Irwin, Homewood, Ill., 1989), pp. xv, 667.
  33. D. Liebetanz, F. Fregni, K. K. Monte-Silva, M. B. Oliveira, A. Amâncio-dos-Santos, M. A. Nitsche, R. C. Guedes, “After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression,” Neurosci. Lett. 398(1-2), 85–90 (2006). [CrossRef] [PubMed]
  34. F. Fregni, P. S. Boggio, M. A. Nitsche, M. A. Marcolin, S. P. Rigonatti, A. Pascual-Leone, “Treatment of major depression with transcranial direct current stimulation,” Bipolar Disord. 8(2), 203–204 (2006). [CrossRef] [PubMed]
  35. F. Hummel, P. Celnik, P. Giraux, A. Floel, W. H. Wu, C. Gerloff, L. G. Cohen, “Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke,” Brain 128(3), 490–499 (2005). [CrossRef] [PubMed]
  36. X. Zheng, D. C. Alsop, G. Schlaug, “Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation,” Neuroimage 45, 196–201 (2011).
  37. J. Baudewig, M. A. Nitsche, W. Paulus, J. Frahm, “Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation,” Magn. Reson. Med. 45(2), 196–201 (2001). [CrossRef] [PubMed]
  38. T. Kamida, S. Kong, N. Eshima, T. Abe, M. Fujiki, H. Kobayashi, “Transcranial direct current stimulation decreases convulsions and spatial memory deficits following pilocarpine-induced status epilepticus in immature rats,” Behav. Brain Res. 217(1), 99–103 (2011). [CrossRef] [PubMed]
  39. D. P. Purpura, J. G. McMurtry, “Intracellular Activities and Evoked Potential Changes during Polarization of Motor Cortex,” J. Neurophysiol. 28, 166–185 (1965). [PubMed]
  40. N. Prakash, J. D. Biag, S. A. Sheth, S. Mitsuyama, J. Theriot, C. Ramachandra, A. W. Toga, “Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex,” Neuroimage 37(Suppl 1), S27–S36 (2007). [CrossRef] [PubMed]
  41. M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,” Neuroimage 16(3), 704–712 (2002). [CrossRef] [PubMed]
  42. I. Vanzetta, A. Grinvald, “Evidence and lack of evidence for the initial dip in the anesthetized rat: implications for human functional brain imaging,” Neuroimage 13(6), 959–967 (2001). [CrossRef] [PubMed]
  43. R. B. Buxton, “The elusive initial dip,” Neuroimage 13(6), 953–958 (2001). [CrossRef] [PubMed]
  44. J. C. Siero, N. Petridou, H. Hoogduin, P. R. Luijten, N. F. Ramsey, “Cortical depth-dependent temporal dynamics of the BOLD response in the human brain,” J. Cereb. Blood Flow Metab. 31(10), 1999–2008 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited