OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 6944–6951

Thermal and laser properties of Nd:Lu3Sc1.5Ga3.5O12 for high power dual-wavelength laser

K. Wu, L. Z. Hao, H. H. Yu, Z. P. Wang, J. Y. Wang, and H. J. Zhang  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 6944-6951 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1036 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We measured the thermal properties of Nd:Lu3Sc1.5Ga3.5O12 (Nd:LuSGG) crystal, including the thermal expansion coefficient, specific heat, and thermal diffusion coefficient. The calculated thermal conductivity is 4.4 W/mK at room temperature. A high-power continuous-wave and passively Q-switched Nd:LuSGG laser was also demonstrated. Continuous-wave output power of 6.96 W is obtained which is the highest power with this material. For the first time to our knowledge, the passively Q-switched Nd:LuSGG laser is reported with the shortest pulse width, largest pulse energy, and highest peak power are achieved to be 5.1 ns, 62.5 μJ, and 12 kW, respectively. By spectral analysis, it has been found that the Nd:LuSGG laser was located at 1059 nm under low pump power, and became dual-wavelength at 1061.5 and 1059 nm when the incident pump power is over 2.27 W. The generating mechanism of dual-wavelength laser is also discussed.

© 2012 OSA

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(160.3380) Materials : Laser materials

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 18, 2012
Revised Manuscript: March 4, 2012
Manuscript Accepted: March 5, 2012
Published: March 12, 2012

K. Wu, L. Z. Hao, H. H. Yu, Z. P. Wang, J. Y. Wang, and H. J. Zhang, "Thermal and laser properties of Nd:Lu3Sc1.5Ga3.5O12 for high power dual-wavelength laser," Opt. Express 20, 6944-6951 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. E. Geusic, H. M. Marcos, L. G. Van-Uitert, “Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium, and gadolinium garnets,” Appl. Phys. Lett. 4(10), 182–184 (1964). [CrossRef]
  2. L. Zhang, P. Shi, L. Li, “Semianalytical thermal analysis of rectangle Nd:GGG in heat capacity laser,” Appl. Phys. B 101(1-2), 137–142 (2010). [CrossRef]
  3. H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, X. Y. Zhang, M. H. Jiang, “Efficient triwavelength laser with a Nd:YGG garnet crystal,” Opt. Lett. 35(11), 1801–1803 (2010). [CrossRef] [PubMed]
  4. J. K. Weber, S. Krishnan, S. Ansell, A. D. Hixson, P. C. Nordine, “Structure of liquid Y3Al5O12 (YAG),” Phys. Rev. Lett. 84(16), 3622–3625 (2000). [CrossRef] [PubMed]
  5. K. Wu, B. Yao, H. J. Zhang, H. H. Yu, Z. P. Wang, J. Y. Wang, M. H. Jiang, “Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating-zone method,” J. Cryst. Growth 312(24), 3631–3636 (2010). [CrossRef]
  6. L. J. Qin, X. L. Meng, L. Zhu, J. H. Liu, B. C. Xu, H. Z. Xu, F. Y. Jiang, C. L. Du, X. Q. Wang, Z. S. Shao, “Influence of the different Gd/Y ratio on the properties of Nd:YxGd1−xVO4 mixed crystals,” Chem. Phys. Lett. 380(3-4), 273–278 (2003). [CrossRef]
  7. J. Liu, X. Meng, Z. Shao, M. Jiang, B. Ozygus, A. Ding, H. Weber, “Pulse energy enhancement in passive Q-switching operation with a class of Nd:GdxY1−xVO4 crystals,” Appl. Phys. Lett. 83(7), 1289–1291 (2003). [CrossRef]
  8. Y. F. Chen, M. L. Ku, L. Y. Tsai, Y. C. Chen, “Diode-pumped passively Q-switched picosecond Nd:GDxY1-xVO4 self-stimulated Raman laser,” Opt. Lett. 29(19), 2279–2281 (2004). [CrossRef] [PubMed]
  9. H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. Shao, M. H. Jiang, “Enhancement of passive Q-switching performance with mixed Nd:LuxGd1-xVO4 laser crystals,” Opt. Lett. 32(15), 2152–2154 (2007). [CrossRef] [PubMed]
  10. J. L. He, Y. X. Fan, J. Du, Y. G. Wang, S. Liu, H. T. Wang, L. H. Zhang, Y. Hang, “4-ps passively mode-locked Nd:Gd0.5Y0.5VO4 laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 29(23), 2803–2805 (2004). [CrossRef] [PubMed]
  11. A. A. Kaminskii, G. Boulon, M. Buoncristiani, B. Dibartolo, A. Kornienko, V. Mironov, “Spectroscopy of a new laser garnet Lu3Sc2Ga3O12:Nd3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements | 〈 ‖U(t)‖ 〉 |2 for Nd3+ ions,” Phys. Status Solidi, A Appl. Res. 141(2), 471–494 (1994). [CrossRef]
  12. K. Wu, L. Z. Hao, H. J. Zhang, H. H. Yu, H. J. Cong, J. Y. Wang, “Growth and characterization of Nd:Lu3ScxGa5−xO12 series laser crystals,” Opt. Commun. 284(21), 5192–5198 (2011). [CrossRef]
  13. W. Koechner, Solid-State Laser Engineering (Science Press, Beijing, in Chinese, 42, 2002).
  14. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007). [CrossRef]
  15. W. Koechner, “Thermal lensing in a Nd:YAG laser rod,” Appl. Opt. 9(11), 2548–2553 (1970). [CrossRef] [PubMed]
  16. Y. G. Yu, J. Y. Wang, H. J. Zhang, Z. P. Wang, H. H. Yu, S. Q. Sun, H. R. Xia, M. H. Jiang, “Thermal characterization of lowly Nd3+ doped disordered Nd:CNGG crystal,” Opt. Express 17(11), 9270–9275 (2009). [CrossRef] [PubMed]
  17. D. Findlay, R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966). [CrossRef]
  18. U. O. Farrukh, A. M. Buoncristiani, C. E. Byvik, “An analysis of the temperature distribution in finite solid-state laser rods,” IEEE J. Quantum Electron. 24(11), 2253–2263 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited