OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 6952–6960

Inducing transparency with large magnetic response and group indices by hybrid dielectric metamaterials

Cheng-Kuang Chen, Yueh-Chun Lai, Yu-Hang Yang, Chia-Yun Chen, and Ta-Jen Yen  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 6952-6960 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3796 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present metamaterial-induced transparency (MIT) phenomena with enhanced magnetic fields in hybrid dielectric metamaterials. Using two hybrid structures of identical-dielectric-constant resonators (IDRs) and distinct-dielectric-constant resonators (DDRs), we demonstrate a larger group index (ng~354), better bandwidth-delay product (BDP~0.9) than metallic-type metamaterials. The keys to enable these properties are to excite either the trapped mode or the suppressed mode resonances, which can be managed by controlling the contrast of dielectric constants between the dielectric resonators in the hybrid metamaterials.

© 2012 OSA

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: November 22, 2011
Revised Manuscript: February 9, 2012
Manuscript Accepted: March 1, 2012
Published: March 12, 2012

Cheng-Kuang Chen, Yueh-Chun Lai, Yu-Hang Yang, Chia-Yun Chen, and Ta-Jen Yen, "Inducing transparency with large magnetic response and group indices by hybrid dielectric metamaterials," Opt. Express 20, 6952-6960 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  2. S. E. Harris, J. E. Field, A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990). [CrossRef] [PubMed]
  3. H. B. Wu, M. Xiao, J. Gea-Banacloche, “Evidence of lasing without inversion in a hot rubidium vapor under electromagnetically-induced-transparency conditions,” Phys. Rev. A 78(4), 041802 (2008). [CrossRef]
  4. A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, M. O. Scully, “Slow, ultraslow, stored, and frozen light,” Adv. At. Mol. Opt. Phys. 46, 191–242 (2001). [CrossRef]
  5. J. J. Longdell, E. Fraval, M. J. Sellars, N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005). [CrossRef] [PubMed]
  6. L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999). [CrossRef]
  7. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001). [CrossRef] [PubMed]
  8. J. Kim, S. L. Chuang, P. C. Ku, C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16(35), S3727–S3735 (2004). [CrossRef]
  9. Z. Y. Li, Y. F. Ma, R. Huang, R. J. Singh, J. Q. Gu, Z. Tian, J. G. Han, W. L. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011). [CrossRef] [PubMed]
  10. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007). [CrossRef] [PubMed]
  11. S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008). [CrossRef] [PubMed]
  12. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008). [CrossRef] [PubMed]
  13. Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010). [CrossRef] [PubMed]
  14. C. Y. Chen, I. W. Un, N. H. Tai, T. J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2009). [CrossRef] [PubMed]
  15. T. Lepetit, E. Akmansoy, J. P. Ganne, J. M. Lourtioz, “Resonance continuum coupling in high-permittivity dielectric metamaterials,” Phys. Rev. B 82(19), 195307 (2010). [CrossRef]
  16. R. K. Mongia, P. Bhartia, “Dielectric resonator antennas - a review and general design relations for resonant-frequency and bandwidth,” Int. J. Microwave Mill 4(3), 230–247 (1994).
  17. J. Wang, Z. Xu, Z. H. Yu, X. Y. Wei, Y. M. Yang, J. F. Wang, S. B. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011). [CrossRef]
  18. B. I. Popa, S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008). [CrossRef] [PubMed]
  19. Y. J. Lai, C. K. Chen, T. J. Yen, “Creating negative refractive identity via single-dielectric resonators,” Opt. Express 17(15), 12960–12970 (2009). [CrossRef] [PubMed]
  20. R. K. Mongia, A. Ittipiboon, “Theoretical and experimental investigations on rectangular dielectric resonator antennas,” IEEE Trans. Antenn. Propag. 45(9), 1348–1356 (1997). [CrossRef]
  21. H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006). [CrossRef] [PubMed]
  22. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008). [CrossRef] [PubMed]
  23. C. L. G. Alzar, M. A. G. Martinez, P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002). [CrossRef]
  24. C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83(4), 041402 (2011). [CrossRef]
  25. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007). [CrossRef]
  26. N. Liu, S. Kaiser, H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. (Deerfield Beach Fla.) 20(23), 4521–4525 (2008). [CrossRef]
  27. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010). [CrossRef] [PubMed]
  28. H. Mosallaei, A. Ahmadi, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B 77(4), 045104 (2008). [CrossRef]
  29. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009). [CrossRef] [PubMed]
  30. M. W. Klein, C. Enkrich, M. Wegener, S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006). [CrossRef] [PubMed]
  31. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008). [CrossRef]
  32. M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002). [CrossRef]
  33. R. W. Boyd, D. J. Gauthier, “'Slow' and 'fast' light,” Prog. Opt. 43, 497–530 (2002). [CrossRef]
  34. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, “Applications of slow light in yelecommunications,” Opt. Photon. News 17(4), 18–23 (2006). [CrossRef]
  35. J. A. Schuller, R. Zia, T. Taubner, M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007). [CrossRef] [PubMed]
  36. S. J. Fiedziuszko, I. C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S. N. Stitzer, K. Wakino, “Dielectric materials, devices, and circuits,” IEEE Trans. Microw. Theory 50(3), 706–720 (2002). [CrossRef]
  37. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22(5), 1062–1074 (2005). [CrossRef]
  38. P. Tassin, L. Zhang, T. Koschny, C. Kurter, S. M. Anlage, C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010). [CrossRef]
  39. P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited