OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7015–7021

Multi-microjoule, MHz repetition rate Ti:sapphire ultrafast regenerative amplifier system

Xiaoshi Zhang, Eric Schneider, Greg Taft, Henry Kapteyn, Margaret Murnane, and Sterling Backus  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7015-7021 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1089 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a cryogenically cooled Ti:sapphire ultrafast regenerative amplifier laser system producing >20 μJ energies at 50 kHz, >12 μJ at 200 kHz and >3.5 μJ at 1MHz with repetition rates continuously tunable from 50 kHz up to 1.7 MHz in a footprint of only 60x180 cm2. This laser uses down-chirped pulse amplification employing a grism stretcher and a glass-block compressor, achieving sub-60-fs pulse duration. This laser represents a several-times improvement in repetition-rate and average power over past Ti:sapphire-based ultrafast lasers in this class. We discuss the unique challenges and solutions for this laser system. This laser system has wide applications especially in ultrafast photoemission, nonlinear imaging and spectroscopy, as well as for micro/nano-machining and ultrafast laser therapy and surgery.

© 2012 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(320.0320) Ultrafast optics : Ultrafast optics

ToC Category:
Ultrafast Optics

Original Manuscript: November 28, 2011
Revised Manuscript: February 3, 2012
Manuscript Accepted: February 6, 2012
Published: March 13, 2012

Virtual Issues
Modular Ultrafast Lasers (Invited Only) (2012) Optics Express

Xiaoshi Zhang, Eric Schneider, Greg Taft, Henry Kapteyn, Margaret Murnane, and Sterling Backus, "Multi-microjoule, MHz repetition rate Ti:sapphire ultrafast regenerative amplifier system," Opt. Express 20, 7015-7021 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003). [CrossRef] [PubMed]
  2. M. Aidelsburger, F. O. Kirchner, F. Krausz, P. Baum, “Single-electron pulses for ultrafast diffraction,” Proc. Natl. Acad. Sci. U.S.A. 107(46), 19714–19719 (2010). [CrossRef] [PubMed]
  3. D. S. Yang, O. F. Mohammed, A. H. Zewail, “Scanning ultrafast electron microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(34), 14993–14998 (2010). [CrossRef] [PubMed]
  4. M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jim, A. Ben-Yakar, “Axon regeneration in C. elegans after femtosecond laser axotomy,” Nature 432, 822–823 (2004). [CrossRef] [PubMed]
  5. R. R. Gattass, E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008). [CrossRef]
  6. M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. S. Jin, A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004). [CrossRef] [PubMed]
  7. S. X. Guo, F. Bourgeois, T. Chokshi, N. J. Durr, M. A. Hilliard, N. Chronis, A. Ben-Yakar, “Femtosecond laser nanoaxotomy lab-on-a-chip for in vivo nerve regeneration studies,” Nat. Methods 5(6), 531–533 (2008). [CrossRef] [PubMed]
  8. T. B. Norris, “Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation,” Opt. Lett. 17(14), 1009–1011 (1992). [CrossRef] [PubMed]
  9. R. Huber, F. Adler, A. Leitenstorfer, M. Beutter, P. Baum, E. Riedle, “12-fs pulses from a continuous-wave-pumped 200-nJ Ti:sapphire amplifier at a variable repetition rate as high as 4 MHz,” Opt. Lett. 28(21), 2118–2120 (2003). [CrossRef] [PubMed]
  10. M. Ramaswamy, M. Ulman, J. Paye, J. G. Fujimoto, “Cavity-dumped femtosecond Kerr-lens mode-locked Ti:A12O3laser,” Opt. Lett. 18(21), 1822–1824 (1993). [CrossRef] [PubMed]
  11. X. B. Zhou, H. Kapteyn, M. Murnane, “Positive-dispersion cavity-dumped Ti: sapphire laser oscillator and its application to white light generation,” Opt. Express 14(21), 9750–9757 (2006). [CrossRef] [PubMed]
  12. S. H. Cho, B. E. Bouma, E. P. Ippen, J. G. Fujimoto, “Low-repetition-rate high-peak-power Kerr-lens mode-locked TiAl2O3 laser with a multiple-pass cavity,” Opt. Lett. 24(6), 417–419 (1999). [CrossRef] [PubMed]
  13. A. Dantan, J. Laurat, A. Ourjoumtsev, R. Tualle-Brouri, P. Grangier, “Femtosecond Ti:sapphire cryogenic amplifier with high gain and MHz repetition rate,” Opt. Express 15(14), 8864–8870 (2007). [CrossRef] [PubMed]
  14. A. Killi, A. Steinmann, J. Dörring, U. Morgner, M. J. Lederer, D. Kopf, C. Fallnich, “High-peak-power pulses from a cavity-dumped Yb:KY(WO4)(2) oscillator,” Opt. Lett. 30(14), 1891–1893 (2005). [CrossRef] [PubMed]
  15. M. Delaigue, I. Manek-Honinger, F. Salin, C. Honninger, P. Rigail, A. Courjaud, E. Mottay, “300 kHz femtosecond Yb:KGW regenerative amplifier using an acousto-optic Q-switch,” Appl. Phys, B. Lasers Opt. 84(3), 375–378 (2006). [CrossRef]
  16. D. Nickel, C. Stolzenburg, A. Giesen, F. Butze, “Ultrafast thin-disk Yb:KY(WO4)2 regenerative amplifier with a 200-kHz repetition rate,” Opt. Lett. 29(23), 2764–2766 (2004). [CrossRef] [PubMed]
  17. K. Sueda, S. Kawato, T. Kobayashi, “LD pumped Yb: YAG regenerative amplifier for high average power short-pulse generation,” Laser Phys. Lett. 5(4), 271–275 (2008). [CrossRef]
  18. T. Eidam, S. Hadrich, F. Roser, E. Seise, T. Gottschall, J. Rothhardt, T. Schreiber, J. Limpert, A. Tunnermann, “A 325-W-Average-Power Fiber CPA System Delivering Sub-400 fs Pulses,” IEEE J. Sel. Top. Quantum Electron. 15(1), 187–190 (2009). [CrossRef]
  19. Y. Zaouter, D. N. Papadopoulos, M. Hanna, J. Boullet, L. Huang, C. Aguergaray, F. Druon, E. Mottay, P. Georges, E. Cormier, “Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers,” Opt. Lett. 33(2), 107–109 (2008). [CrossRef] [PubMed]
  20. M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 18(12), 977–979 (1993). [CrossRef] [PubMed]
  21. S. J. Backus, H. C. Kapteyn, and M. M. Murnane, “Ultrashort pulse amplification in cryogenically cooled amplifiers ” (Regents of the University of Colorado, USA Patent number 6,804,287, 2004).
  22. S. Backus, R. Bartels, S. Thompson, R. Dollinger, H. C. Kapteyn, M. M. Murnane, “High-efficiency, single-stage 7-kHz high-average-power ultrafast laser system,” Opt. Lett. 26(7), 465–467 (2001). [CrossRef] [PubMed]
  23. H. C. Kapteyn and S. J. Backus, “Downchirped Pulse Amplification,” (The Regents of the University of Colorado, US Patent # 7,072,101, 2006).
  24. D. M. Gaudiosi, A. L. Lytle, P. Kohl, M. M. Murnane, H. C. Kapteyn, S. Backus, “11-W average power Ti:sapphire amplifier system using downchirped pulse amplification,” Opt. Lett. 29(22), 2665–2667 (2004). [CrossRef] [PubMed]
  25. “Coherent, Data Sheet, RegA High Repetition-Rate, Femtosecond Ti:Sapphire Amplifiers,” Coherent Inc., ed. (2010).
  26. W. H. Lowdermilk, J. E. Murray, “The Multipass Amplifier - Theory and Numerical-Analysis,” J. Appl. Phys. 51(5), 2436–2444 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited