OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7046–7053

Octave-spanning ultrafast OPO with 2.6-6.1µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser

Nick Leindecker, Alireza Marandi, Robert L. Byer, Konstantin L. Vodopyanov, Jie Jiang, Ingmar Hartl, Martin Fermann, and Peter G. Schunemann  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7046-7053 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1952 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the extension of broadband degenerate OPO operation further into mid-infrared. A femtosecond thulium fiber laser with output centered at 2050 nm synchronously pumps a 500-μm-long crystal of orientation patterned GaAs providing broadband gain centered at 4.1 µm. We observe a pump threshold of 17 mW and output bandwidth extending from 2.6 to 6.1 µm at the −30 dB level. Average output power was 37 mW. Appropriate resonator group dispersion is a key factor for achieving degenerate operation with instantaneously broad bandwidth. The output spectrum is very sensitive to absorption and dispersion introduced by molecular species inside the OPO cavity.

© 2012 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Ultrafast Optics

Original Manuscript: December 20, 2011
Revised Manuscript: February 10, 2012
Manuscript Accepted: February 13, 2012
Published: March 13, 2012

Virtual Issues
Modular Ultrafast Lasers (Invited Only) (2012) Optics Express

Nick Leindecker, Alireza Marandi, Robert L. Byer, Konstantin L. Vodopyanov, Jie Jiang, Ingmar Hartl, Martin Fermann, and Peter G. Schunemann, "Octave-spanning ultrafast OPO with 2.6-6.1µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser," Opt. Express 20, 7046-7053 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics 4(12), 822–832 (2010). [CrossRef]
  2. P. B. Corkum, F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007). [CrossRef]
  3. C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).
  4. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16(4), 2387–2397 (2008). [CrossRef] [PubMed]
  5. S. A. Diddams, L. Hollberg, V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007). [CrossRef] [PubMed]
  6. F. Keilmann, C. Gohle, R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004). [CrossRef] [PubMed]
  7. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett. 34(9), 1330–1332 (2009). [CrossRef] [PubMed]
  8. C. D. Nabors, S. T. Yang, T. Day, R. L. Byer, “Coherence properties of a doubly-resonant monolithic optical parametric oscillator,” J. Opt. Soc. Am. B 7(5), 815–820 (1990). [CrossRef]
  9. S. T. Wong, T. Plettner, K. L. Vodopyanov, K. Urbanek, M. Digonnet, R. L. Byer, “Self-phase-locked degenerate femtosecond optical parametric oscillator,” Opt. Lett. 33(16), 1896–1898 (2008). [CrossRef] [PubMed]
  10. S. T. Wong, K. L. Vodopyanov, R. L. Byer, “Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source,” J. Opt. Soc. Am. B 27(5), 876–882 (2010). [CrossRef]
  11. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19(7), 6296–6302 (2011). [CrossRef] [PubMed]
  12. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36(12), 2275–2277 (2011). [CrossRef] [PubMed]
  13. J. Jiang, A. Ruehl, I. Hartl, and M. E. Fermann, “Tunable coherent Raman soliton generation with a Tm-fiber system,” CThBB5 CLEO 2011, Baltimore, Maryland, USA.
  14. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986). [CrossRef] [PubMed]
  15. F. M. Mitschke, L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986). [CrossRef] [PubMed]
  16. C. B. Ebert, L. A. Eyres, M. M. Fejer, J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 202, 187–193 (1999). [CrossRef]
  17. The HITRAN Database, http://www.cfa.harvard.edu/HITRAN/
  18. V. L. Kalashnikov, E. Sorokin, “Soliton absorption spectroscopy,” Phys. Rev. A 81(3), 033840 (2010). [CrossRef] [PubMed]
  19. A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107(23), 233002 (2011). [CrossRef] [PubMed]
  20. J. Jiang, C. Mohr, J. Bethge, M. E. Fermann, and I. Hartl, “Fully stabilized, self-referenced thulium fiber frequency comb,” CLEO Europe 2011, p. PDB-1.
  21. J. Bethge, J. Jiang, C. Mohr, M. E. Fermann, and I. Hartl, “Optically referenced Tm-fiber-laser frequency comb,” ASSP 2012, p. AT5A.3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited