OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7071–7080

Efficient light amplification in low gain materials due to a photonic band edge effect

L. Ondič and I. Pelant  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 7071-7080 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2066 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One of the possibilities of increasing optical gain of a light emitting source is by embedding it into a photonic crystal (PhC). If the properties of the PhC are tuned so that the emission wavelength of the light source with gain falls close to the photonic band edge of the PhC, then due to low group velocity of the light modes near the band edge caused by many multiple reflections of light on the photonic structure, the stimulated emission can be significantly enhanced. Here, we perform simulation of the photonic band edge effect on the light intensity of spectrally broad source interacting with a diamond PhC with low optical gain. We show that even for the case of low gain, up to 10-fold increase of light intensity output can be obtained for the two-dimensional PhC consisting of only 19 periodic layers of infinitely high diamond rods ordered into a square lattice. Moreover, considering the experimentally feasible structure composed of diamond rods of finite height - PhC slab - we show that the gain enhancement, even if reduced compared to the ideal case of infinite rods, still remains relatively high. For this particular structure, we show that up to 3.5-fold enhancement of light intensity can be achieved.

© 2012 OSA

OCIS Codes
(050.5298) Diffraction and gratings : Photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures
(310.6805) Thin films : Theory and design

ToC Category:
Photonic Crystals

Original Manuscript: December 14, 2011
Revised Manuscript: February 14, 2012
Manuscript Accepted: February 19, 2012
Published: March 13, 2012

L. Ondič and I. Pelant, "Efficient light amplification in low gain materials due to a photonic band edge effect," Opt. Express 20, 7071-7080 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. J. D. Joannopoulous, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).
  3. J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998). [CrossRef] [PubMed]
  4. H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photon. 2, 622–626 (2008). [CrossRef]
  5. S. Noda, M. Fujita, T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449–458 (2007). [CrossRef]
  6. D. Taillaert, P. Bienstman, R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004). [CrossRef] [PubMed]
  7. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997). [CrossRef]
  8. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005). [CrossRef] [PubMed]
  9. J. J. Wierer, A. David, M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photon. 3, 163–169 (2009). [CrossRef]
  10. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D: Appl. Phys. 40, 2666–2670 (2007). [CrossRef]
  11. J. Grgic, J. Pedersen, S. Xiao, N. Mortensen, “Group index limitations in slow-light photonic crystals,” Photon. Nano. 8, 56–61 (2010). [CrossRef]
  12. J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band-edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896 (1994).
  13. Y. A. Vlasov, K. Luterova, I. Pelant, B. Honerlage, V. N. Astratov, “Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals,” Appl. Phys. Lett. 71, 1616 (1997). [CrossRef]
  14. M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, Y. Arakawa, “Photonic band-edge micro lasers with quantum dot gain,” Opt. Express 17, 640–648 (2009). [CrossRef] [PubMed]
  15. K. Sakoda, “Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals,” Opt. Express 4, 167–176 (1999). [CrossRef] [PubMed]
  16. D. Wiersma, “The smallest random laser,” Nature 406, 132–135 (2000). [CrossRef] [PubMed]
  17. J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011). [CrossRef]
  18. S. Ossicini, L. Pavesi, F. Priolo, Light Emitting Silicon for Microphotonics (Springer, 2003). [CrossRef]
  19. H. Chen, J. H. Shin, P. M. Fauchet, “Optical gain in silicon nanocrystal waveguides,” in Silicon Nanophotonics: Basic Principles, Present Status and Perspectives, L. Khriachtchev, ed. (World Scientific Publishing, 2009), pp. 89–117.
  20. K. Dohnalová, K. Žídek, L. Ondič, K. Kůsová, O. Cibulka, I. Pelant, “Optical gain at the F-band of oxidized silicon nanocrystals,” J. Phys. D: Appl. Phys. 42, 135102 (2009). [CrossRef]
  21. A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Springer, 2001).
  22. I. Aharonovich, A. D. Greentree, S. Prawer, “Diamond photonics,” Nature Photon. 5, 397–405 (2011). [CrossRef]
  23. A. Kromka, B. Rezek, Z. Remes, M. Michalka, M. Ledinsky, J. Zemek, J. Potmesil, M. Vanecek, “Formation of continuous nanocrystalline diamond layers on glass and silicon at low temperatures,” Chem. Vap. Deposition 14, 181–186 (2008). [CrossRef]
  24. S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, J. Salzman, “Diamond based photonic crystal microcavities,” Opt. Express 14, 3556–3562 (2006). [CrossRef] [PubMed]
  25. J. W. Baldwin, M. Zalalutdinov, T. Feygelson, J. E. Butler, B. H. Houston, “Fabrication of short-wavelength photonic crystals in wide-band-gap nanocrystalline diamond films,” J. Vac. Sci. Technol. B 24, 50 (2006). [CrossRef]
  26. C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
  27. L. Ondič, K. Dohnalová, M. Ledinský, A. Kromka, O. Babchenko, B. Rezek, “Effective extraction of photoluminescence from a diamond layer with a photonic crystal,” ACS Nano 5, 346–350 (2011). [CrossRef]
  28. S. G. Johnson, J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef] [PubMed]
  29. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  30. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999). [CrossRef]
  31. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett. 68, 2023–2026 (1992). [CrossRef] [PubMed]
  32. K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B 52, 7982–7986 (1995). [CrossRef]
  33. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nature Nanotech. 2, 515–520 (2007). [CrossRef]
  34. E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000). [CrossRef] [PubMed]
  35. R. Sprik, B. A. van Tiggelen, A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265 (1996). [CrossRef]
  36. A. Asatryan, S. Fabre, K. Busch, R. McPhedran, L. Botten, M. de Sterke, N. A. Nicorovici, “Two-dimensional local density of states in two-dimensional photonic crystals,” Opt. Express 8, 191–196 (2001). [CrossRef] [PubMed]
  37. A. F. Koenderink, M. Kafesaki, C. M. Soukoulis, V. Sandoghdar, “Spontaneous emission rates of dipoles in photonic crystal membranes,” JOSA B 23, 1196–1206 (2006). [CrossRef]
  38. Q. Wang, S. Stobbe, P. Lodahl, “Mapping the local density of optical states of a photonic crystal with single quantum dots,” Phys. Rev. Lett. 107, 167404 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited